cho pt x^2-2x+m-3=0 xác định các giá trị của m để pt có 2 no x1,x2 thỏa mãn điều kiện: x1^2 -2×2+x1x2=-12

cho pt x^2-2x+m-3=0 xác định các giá trị của m để pt có 2 no x1,x2 thỏa mãn điều kiện: x1^2 -2×2+x1x2=-12

0 bình luận về “cho pt x^2-2x+m-3=0 xác định các giá trị của m để pt có 2 no x1,x2 thỏa mãn điều kiện: x1^2 -2×2+x1x2=-12”

  1. Đáp án: m=-5

     

    Giải thích các bước giải:

     Để pt có 2n nghiệm phân biệt thì:

    $\begin{array}{l}
    \Delta ‘ > 0\\
     \Rightarrow {\left( { – 1} \right)^2} – m + 3 > 0\\
     \Rightarrow m < 4\\
    Theo\,Viet:\left\{ \begin{array}{l}
    {x_1} + {x_2} = 2\\
    {x_1}{x_2} = m – 3
    \end{array} \right.\\
    Và:x_1^2 – 2{x_1} + m – 3 = 0\\
     \Rightarrow x_1^2 = 2{x_1} + 3 – m\\
    Do:x_1^2 – 2{x_2} + {x_1}{x_2} =  – 12\\
     \Rightarrow 2{x_1} + 3 – m – 2{x_2} + m – 3 =  – 12\\
     \Rightarrow 2\left( {{x_1} – {x_2}} \right) =  – 12\\
     \Rightarrow {x_1} – {x_2} =  – 6\\
     \Rightarrow {\left( {{x_1} – {x_2}} \right)^2} = 36\\
     \Rightarrow {\left( {{x_1} + {x_2}} \right)^2} – 4{x_1}{x_2} = 36\\
     \Rightarrow 4 – 4.\left( {m – 3} \right) = 36\\
     \Rightarrow m =  – 5\left( {tmdk} \right)
    \end{array}$

    Bình luận

Viết một bình luận