cho pt:x^2-(m-1)x-1-m^2=0 . a,Cm pt có 2 nghiệm trái dấu. b,Gọi x1,x2 là nghiệm của pt trên tìm m bt |x1+|x2|=2 căn 2 06/12/2021 Bởi Mary cho pt:x^2-(m-1)x-1-m^2=0 . a,Cm pt có 2 nghiệm trái dấu. b,Gọi x1,x2 là nghiệm của pt trên tìm m bt |x1+|x2|=2 căn 2
Đáp án: b. \(\left[ \begin{array}{l}m = 1 + 2\sqrt 2 \\m = 1 – 2\sqrt 2 \\m = -\frac{3}{5}\\m = – 1\end{array} \right.\) Giải thích các bước giải: \(\begin{array}{*{20}{l}}{a. – 1 – {m^2} < 0}\\{{\rm{\;}} \to {m^2} + 1 > 0\left( {ld} \right)\forall m \in R}\\{}\\{b.\left\{ {\begin{array}{*{20}{l}}{{m^2} – 2m + 1 + 4{m^2} > 0}\\{\left| {{x_1}} \right| + \left| {{x_2}} \right| = 2\sqrt 2 {\rm{\;}}}\end{array}} \right.}\\{ \to \left\{ {\begin{array}{*{20}{l}}{5{m^2} – 2m + 1 > 0\left( {ld} \right)\forall m \in R}\\{{x_1}^2 + {x_2}^2 + 2\left| {{x_1}{x_2}} \right| = 8}\end{array}} \right.}\\{ \to {x_1}^2 + {x_2}^2 + 2{x_1}{x_2} – 2{x_1}{x_2} + 2\left| {{x_1}{x_2}} \right| = 8}\\{ \to {{\left( {{x_1} + {x_2}} \right)}^2} – 2{x_1}{x_2} + 2\left| {{x_1}{x_2}} \right| = 8}\\{ \to 2\left| {{x_1}{x_2}} \right| = 8 – {{\left( {{x_1} + {x_2}} \right)}^2} + 2{x_1}{x_2}}\\{ \to \left[ {\begin{array}{*{20}{l}}{2{x_1}{x_2} = 8 – {{\left( {{x_1} + {x_2}} \right)}^2} + 2{x_1}{x_2}}\\{ – 2{x_1}{x_2} = 8 – {{\left( {{x_1} + {x_2}} \right)}^2} + 2{x_1}{x_2}}\end{array}} \right.}\\{ \to \left[ {\begin{array}{*{20}{l}}{{{\left( {{x_1} + {x_2}} \right)}^2} = 8}\\{8 – {{\left( {{x_1} + {x_2}} \right)}^2} + 4{x_1}{x_2} = 0}\end{array}} \right.}\\{ \to \left[ {\begin{array}{*{20}{l}}{{{\left( {m – 1} \right)}^2} = 8}\\{8 – {{\left( {m – 1} \right)}^2} – 4 – 4{m^2} = 0}\end{array}} \right.}\\{ \to \left[ {\begin{array}{*{20}{l}}{m – 1 = 2\sqrt 2 }\\{m – 1 = {\rm{ \;}} – 2\sqrt 2 }\\{8 – {m^2} + 2m – 1 – 4 – 4{m^2} = 0}\end{array}} \right.}\\{ \to \left[ {\begin{array}{*{20}{l}}{m = 1 + 2\sqrt 2 }\\{m = 1 – 2\sqrt 2 }\\{ – 5{m^2} + 2m + 3 = 0}\end{array}} \right.}\\{ \to \left[ {\begin{array}{*{20}{l}}{m = 1 + 2\sqrt 2 }\\{m = 1 – 2\sqrt 2 }\\{m = – \frac{3}{5}}\\{m = {\rm{ \;}}1}\end{array}} \right.}\end{array}\) Bình luận
Đáp án:
b. \(\left[ \begin{array}{l}
m = 1 + 2\sqrt 2 \\
m = 1 – 2\sqrt 2 \\
m = -\frac{3}{5}\\
m = – 1
\end{array} \right.\)
Giải thích các bước giải:
\(\begin{array}{*{20}{l}}
{a. – 1 – {m^2} < 0}\\
{{\rm{\;}} \to {m^2} + 1 > 0\left( {ld} \right)\forall m \in R}\\
{}\\
{b.\left\{ {\begin{array}{*{20}{l}}
{{m^2} – 2m + 1 + 4{m^2} > 0}\\
{\left| {{x_1}} \right| + \left| {{x_2}} \right| = 2\sqrt 2 {\rm{\;}}}
\end{array}} \right.}\\
{ \to \left\{ {\begin{array}{*{20}{l}}
{5{m^2} – 2m + 1 > 0\left( {ld} \right)\forall m \in R}\\
{{x_1}^2 + {x_2}^2 + 2\left| {{x_1}{x_2}} \right| = 8}
\end{array}} \right.}\\
{ \to {x_1}^2 + {x_2}^2 + 2{x_1}{x_2} – 2{x_1}{x_2} + 2\left| {{x_1}{x_2}} \right| = 8}\\
{ \to {{\left( {{x_1} + {x_2}} \right)}^2} – 2{x_1}{x_2} + 2\left| {{x_1}{x_2}} \right| = 8}\\
{ \to 2\left| {{x_1}{x_2}} \right| = 8 – {{\left( {{x_1} + {x_2}} \right)}^2} + 2{x_1}{x_2}}\\
{ \to \left[ {\begin{array}{*{20}{l}}
{2{x_1}{x_2} = 8 – {{\left( {{x_1} + {x_2}} \right)}^2} + 2{x_1}{x_2}}\\
{ – 2{x_1}{x_2} = 8 – {{\left( {{x_1} + {x_2}} \right)}^2} + 2{x_1}{x_2}}
\end{array}} \right.}\\
{ \to \left[ {\begin{array}{*{20}{l}}
{{{\left( {{x_1} + {x_2}} \right)}^2} = 8}\\
{8 – {{\left( {{x_1} + {x_2}} \right)}^2} + 4{x_1}{x_2} = 0}
\end{array}} \right.}\\
{ \to \left[ {\begin{array}{*{20}{l}}
{{{\left( {m – 1} \right)}^2} = 8}\\
{8 – {{\left( {m – 1} \right)}^2} – 4 – 4{m^2} = 0}
\end{array}} \right.}\\
{ \to \left[ {\begin{array}{*{20}{l}}
{m – 1 = 2\sqrt 2 }\\
{m – 1 = {\rm{ \;}} – 2\sqrt 2 }\\
{8 – {m^2} + 2m – 1 – 4 – 4{m^2} = 0}
\end{array}} \right.}\\
{ \to \left[ {\begin{array}{*{20}{l}}
{m = 1 + 2\sqrt 2 }\\
{m = 1 – 2\sqrt 2 }\\
{ – 5{m^2} + 2m + 3 = 0}
\end{array}} \right.}\\
{ \to \left[ {\begin{array}{*{20}{l}}
{m = 1 + 2\sqrt 2 }\\
{m = 1 – 2\sqrt 2 }\\
{m = – \frac{3}{5}}\\
{m = {\rm{ \;}}1}
\end{array}} \right.}
\end{array}\)