Cho Q= $\frac{(x+27)P}{(\sqrt{x}+3)(\sqrt{x}-2)}$, với P= $\sqrt{x}-2$. Đk:$\left \{ {{x\geq0} \atop {x\neq1, x\neq4 }} \right.$. CM Q$\geq$ 6
Cho Q= $\frac{(x+27)P}{(\sqrt{x}+3)(\sqrt{x}-2)}$, với P= $\sqrt{x}-2$. Đk:$\left \{ {{x\geq0} \atop {x\neq1, x\neq4 }} \right.$. CM Q$\geq$ 6
`Q=((x+27)P)/((sqrtx+3)(sqrtx-2))(x>=0,x ne 1,x ne 4)`
`=((x+27)(sqrtx-2))/((sqrtx+3)(sqrtx-2))`
`=(x+27)/(sqrtx+3)`
`=(x-9+36)/(sqrtx+3)`
`=((sqrtx+3)(sqrtx-3)+36)/(sqrtx+3)`
`=sqrtx-3+36/(sqrtx+3)`
`=sqrtx+3+36/(sqrtx+3)-6`
Áp dụng BĐT cosi với 2 số dương ta có:
`(sqrtx+3)+36/(sqrtx+3)>=2.6=12`
`=>Q>=12-6=6(đpcm)`
Dấu “=” xảy ra khi `(sqrtx+3)=36/(sqrtx+3)`
`<=>(sqrtx+3)^2=36`
`<=>sqrtx+3=6`(do `sqrtx+3>=3`)
`<=>sqrtx=3`
`<=>x=9`
Vậy `Q>=6(AA x>=0,x ne 1,x ne 4)`