Cho S=1/5^2-2/5^3+…+99/5^100-100/5^101 CMR: S<1/36

Cho S=1/5^2-2/5^3+…+99/5^100-100/5^101 CMR: S<1/36

0 bình luận về “Cho S=1/5^2-2/5^3+…+99/5^100-100/5^101 CMR: S<1/36”

  1. Giải thích các bước giải:

    Ta có:

    $S=\dfrac{1}{5^2}-\dfrac{2}{5^3}+…+\dfrac{99}{5^{100}}-\dfrac{100}{5^{101}}$

    $\to 5S=\dfrac{1}{5}-\dfrac{2}{5^2}+…+\dfrac{99}{5^{99}}-\dfrac{100}{5^{100}}$

    $\to 5S+S=\dfrac15-\dfrac1{5^2}-…-\dfrac1{5^{100}}-\dfrac{100}{5^{101}}$

    $\to 6S=\dfrac15-(\dfrac1{5^2}+…+\dfrac1{5^{100}})-\dfrac{100}{5^{101}}$

    Lại có:

    $P=\dfrac1{5^2}+…+\dfrac1{5^{100}}$

    $\to 5P=\dfrac1{5}+…+\dfrac1{5^{99}}$

    $\to 5P-P=\dfrac15-\dfrac1{5^{100}}$

    $\to 4P=\dfrac15-\dfrac1{5^{100}}$

    $\to P=\dfrac14(\dfrac15-\dfrac1{5^{100}})$

    $\to 6S=\dfrac15-\dfrac14(\dfrac15-\dfrac1{5^{100}})-\dfrac{100}{5^{101}}$

    $\to 6S=\dfrac15-\dfrac1{20}+\dfrac1{4\cdot 5^{100}}-\dfrac{20}{5^{100}}$

    $\to 6S=\dfrac3{20}-\dfrac{79}{4\cdot 5^{100}}<\dfrac3{20}$

    $\to S<\dfrac{1}{40}<\dfrac1{36}$

    Bình luận

Viết một bình luận