Cho sin alpha=-1/7,alpha(-pi/2,0) a,tinh cos(alpha-5pi/6) b,tinh sin 2pi/3-2pi/3-alpha c,tinh tan(3pi/4+alpha) 14/10/2021 Bởi Kinsley Cho sin alpha=-1/7,alpha(-pi/2,0) a,tinh cos(alpha-5pi/6) b,tinh sin 2pi/3-2pi/3-alpha c,tinh tan(3pi/4+alpha)
Giải thích các bước giải: Ta có: \(\begin{array}{l}\dfrac{{ – \pi }}{2} < \alpha < 0 \Rightarrow \left\{ \begin{array}{l}\sin \alpha < 0\\\cos \alpha > 0\end{array} \right.\\a,\\\cos \alpha > 0 \Rightarrow \cos \alpha = \sqrt {1 – {{\sin }^2}\alpha } = \dfrac{{4\sqrt 3 }}{7}\\\cos \left( {\alpha – \dfrac{{5\pi }}{6}} \right) = \cos \alpha .\cos \dfrac{{5\pi }}{6} + \sin \alpha .sin\dfrac{{5\pi }}{6} = \dfrac{{4\sqrt 3 }}{7}.\dfrac{{ – \sqrt 3 }}{2} + \dfrac{{ – 1}}{7}.\dfrac{1}{2} = \dfrac{{ – 13}}{{14}}\\b,\\\sin \left( {\dfrac{{2\pi }}{3} – \alpha } \right) = \sin \dfrac{{2\pi }}{3}.\cos \alpha – \sin \alpha .\cos \dfrac{{2\pi }}{3} = \dfrac{{\sqrt 3 }}{2}.\dfrac{{4\sqrt 3 }}{7} – \dfrac{{ – 1}}{7}.\dfrac{{ – 1}}{2} = \dfrac{6}{7}\\c,\\\tan \left( {\dfrac{{3\pi }}{4} + \alpha } \right) = \dfrac{{\sin \left( {\dfrac{{3\pi }}{4} + \alpha } \right)}}{{\cos \left( {\dfrac{{3\pi }}{4} + \alpha } \right)}} = \dfrac{{\sin \dfrac{{3\pi }}{4}.\cos \alpha + \cos \dfrac{{3\pi }}{4}.\sin \alpha }}{{\cos \dfrac{{3\pi }}{4}.\cos \alpha – sin\dfrac{{3\pi }}{4}.\sin \alpha }} = \dfrac{{\dfrac{{\sqrt 2 }}{2}.\dfrac{{4\sqrt 3 }}{7} + \dfrac{{ – \sqrt 2 }}{2}.\dfrac{{ – 1}}{7}}}{{\dfrac{{ – \sqrt 2 }}{2}.\dfrac{{4\sqrt 3 }}{7} – \dfrac{{ – 1}}{7}.\dfrac{{\sqrt 2 }}{2}}} = \dfrac{{4\sqrt 3 + 1}}{{1 – 4\sqrt 3 }}\end{array}\) Bình luận
Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
\dfrac{{ – \pi }}{2} < \alpha < 0 \Rightarrow \left\{ \begin{array}{l}
\sin \alpha < 0\\
\cos \alpha > 0
\end{array} \right.\\
a,\\
\cos \alpha > 0 \Rightarrow \cos \alpha = \sqrt {1 – {{\sin }^2}\alpha } = \dfrac{{4\sqrt 3 }}{7}\\
\cos \left( {\alpha – \dfrac{{5\pi }}{6}} \right) = \cos \alpha .\cos \dfrac{{5\pi }}{6} + \sin \alpha .sin\dfrac{{5\pi }}{6} = \dfrac{{4\sqrt 3 }}{7}.\dfrac{{ – \sqrt 3 }}{2} + \dfrac{{ – 1}}{7}.\dfrac{1}{2} = \dfrac{{ – 13}}{{14}}\\
b,\\
\sin \left( {\dfrac{{2\pi }}{3} – \alpha } \right) = \sin \dfrac{{2\pi }}{3}.\cos \alpha – \sin \alpha .\cos \dfrac{{2\pi }}{3} = \dfrac{{\sqrt 3 }}{2}.\dfrac{{4\sqrt 3 }}{7} – \dfrac{{ – 1}}{7}.\dfrac{{ – 1}}{2} = \dfrac{6}{7}\\
c,\\
\tan \left( {\dfrac{{3\pi }}{4} + \alpha } \right) = \dfrac{{\sin \left( {\dfrac{{3\pi }}{4} + \alpha } \right)}}{{\cos \left( {\dfrac{{3\pi }}{4} + \alpha } \right)}} = \dfrac{{\sin \dfrac{{3\pi }}{4}.\cos \alpha + \cos \dfrac{{3\pi }}{4}.\sin \alpha }}{{\cos \dfrac{{3\pi }}{4}.\cos \alpha – sin\dfrac{{3\pi }}{4}.\sin \alpha }} = \dfrac{{\dfrac{{\sqrt 2 }}{2}.\dfrac{{4\sqrt 3 }}{7} + \dfrac{{ – \sqrt 2 }}{2}.\dfrac{{ – 1}}{7}}}{{\dfrac{{ – \sqrt 2 }}{2}.\dfrac{{4\sqrt 3 }}{7} – \dfrac{{ – 1}}{7}.\dfrac{{\sqrt 2 }}{2}}} = \dfrac{{4\sqrt 3 + 1}}{{1 – 4\sqrt 3 }}
\end{array}\)