Cho sin alpha=-1/7,alpha(-pi/2,0) a,tinh cos(alpha-5pi/6) b,tinh sin 2pi/3-2pi/3-alpha c,tinh tan(3pi/4+alpha)

Cho sin alpha=-1/7,alpha(-pi/2,0)
a,tinh cos(alpha-5pi/6)
b,tinh sin 2pi/3-2pi/3-alpha
c,tinh tan(3pi/4+alpha)

0 bình luận về “Cho sin alpha=-1/7,alpha(-pi/2,0) a,tinh cos(alpha-5pi/6) b,tinh sin 2pi/3-2pi/3-alpha c,tinh tan(3pi/4+alpha)”

  1. Giải thích các bước giải:

     Ta có:

    \(\begin{array}{l}
    \dfrac{{ – \pi }}{2} < \alpha  < 0 \Rightarrow \left\{ \begin{array}{l}
    \sin \alpha  < 0\\
    \cos \alpha  > 0
    \end{array} \right.\\
    a,\\
    \cos \alpha  > 0 \Rightarrow \cos \alpha  = \sqrt {1 – {{\sin }^2}\alpha }  = \dfrac{{4\sqrt 3 }}{7}\\
    \cos \left( {\alpha  – \dfrac{{5\pi }}{6}} \right) = \cos \alpha .\cos \dfrac{{5\pi }}{6} + \sin \alpha .sin\dfrac{{5\pi }}{6} = \dfrac{{4\sqrt 3 }}{7}.\dfrac{{ – \sqrt 3 }}{2} + \dfrac{{ – 1}}{7}.\dfrac{1}{2} = \dfrac{{ – 13}}{{14}}\\
    b,\\
    \sin \left( {\dfrac{{2\pi }}{3} – \alpha } \right) = \sin \dfrac{{2\pi }}{3}.\cos \alpha  – \sin \alpha .\cos \dfrac{{2\pi }}{3} = \dfrac{{\sqrt 3 }}{2}.\dfrac{{4\sqrt 3 }}{7} – \dfrac{{ – 1}}{7}.\dfrac{{ – 1}}{2} = \dfrac{6}{7}\\
    c,\\
    \tan \left( {\dfrac{{3\pi }}{4} + \alpha } \right) = \dfrac{{\sin \left( {\dfrac{{3\pi }}{4} + \alpha } \right)}}{{\cos \left( {\dfrac{{3\pi }}{4} + \alpha } \right)}} = \dfrac{{\sin \dfrac{{3\pi }}{4}.\cos \alpha  + \cos \dfrac{{3\pi }}{4}.\sin \alpha }}{{\cos \dfrac{{3\pi }}{4}.\cos \alpha  – sin\dfrac{{3\pi }}{4}.\sin \alpha }} = \dfrac{{\dfrac{{\sqrt 2 }}{2}.\dfrac{{4\sqrt 3 }}{7} + \dfrac{{ – \sqrt 2 }}{2}.\dfrac{{ – 1}}{7}}}{{\dfrac{{ – \sqrt 2 }}{2}.\dfrac{{4\sqrt 3 }}{7} – \dfrac{{ – 1}}{7}.\dfrac{{\sqrt 2 }}{2}}} = \dfrac{{4\sqrt 3  + 1}}{{1 – 4\sqrt 3 }}
    \end{array}\)

    Bình luận

Viết một bình luận