cho sin anpha=4/5, (0 06/10/2021 Bởi Brielle cho sin anpha=4/5, (0 { "@context": "https://schema.org", "@type": "QAPage", "mainEntity": { "@type": "Question", "name": " cho sin anpha=4/5, (0
$0<\alpha<\dfrac{\pi}{2}$ $\Rightarrow \cos\alpha>0$, $\sin\dfrac{\alpha}{2}>0,\cos\dfrac{\alpha}{2}>0$ $\Rightarrow \cos\alpha=\sqrt{1-\sin^2\alpha}=\dfrac{3}{5}$ $\sin^2\dfrac{\alpha}{2}=\dfrac{1-\cos\alpha}{2}=\dfrac{1}{5}$ $\Rightarrow \sin\dfrac{\alpha}{2}=\dfrac{1}{\sqrt5}$ $\Rightarrow \cos\dfrac{\alpha}{2}=\dfrac{2}{\sqrt5}$ $\sin 2\alpha=2\sin\alpha.\cos\alpha=\dfrac{24}{25}$ $\cos 2\alpha=\cos^2\alpha-\sin^2\alpha=\dfrac{-7}{25}$ Vậy ta có: $\sin\dfrac{5\alpha}{2}=\sin(\dfrac{\alpha}{2}+2\alpha)$ $=\sin\dfrac{\alpha}{2}.\cos2\alpha+\cos\dfrac{\alpha}{2}\sin2\alpha$ $=\dfrac{41}{125}$ Bình luận
Đáp án: \[\sin \frac{{5\alpha }}{2} = \frac{{41}}{{25\sqrt 5 }}\] Giải thích các bước giải: Ta có: \(\begin{array}{l}0 < \alpha < \dfrac{\pi }{2} \Rightarrow \left\{ \begin{array}{l}\sin \alpha > 0\\cos\alpha > 0\end{array} \right.\\{\sin ^2}\alpha + {\cos ^2}\alpha = 1\\\cos \alpha > 0 \Rightarrow \cos \alpha = \sqrt {1 – {{\sin }^2}\alpha } = \dfrac{3}{5}\\\tan \alpha = \dfrac{{\sin \alpha }}{{\cos \alpha }} = \dfrac{4}{3}\\\sin 2\alpha = 2\sin \alpha .\cos \alpha = 2.\dfrac{4}{5}.\dfrac{3}{5} = \dfrac{{24}}{{25}}\\\cos 2\alpha = 2{\cos ^2}\alpha – 1 = 2.{\left( {\dfrac{3}{5}} \right)^2} – 1 = – \dfrac{7}{{25}}\\0 < \alpha < \dfrac{\pi }{2} \Rightarrow 0 < \dfrac{\alpha }{2} < \dfrac{\pi }{4} \Rightarrow \left\{ \begin{array}{l}\sin \dfrac{\alpha }{2} > 0\\\cos \dfrac{\alpha }{2} > 0\end{array} \right.\\\cos \alpha = 2{\cos ^2}\dfrac{\alpha }{2} – 1 = 1 – 2{\sin ^2}\dfrac{\alpha }{2} \Rightarrow \left\{ \begin{array}{l}\sin \dfrac{\alpha }{2} = \dfrac{1}{{\sqrt 5 }}\\\cos \dfrac{\alpha }{2} = \dfrac{2}{{\sqrt 5 }}\end{array} \right.\\\sin \dfrac{{5\alpha }}{2} = \sin \left( {2\alpha + \dfrac{\alpha }{2}} \right) = \sin 2\alpha .\cos \dfrac{\alpha }{2} + \cos 2\alpha .\sin \dfrac{\alpha }{2}\\ = \dfrac{{24}}{{25}}.\dfrac{2}{{\sqrt 5 }} + \dfrac{{ – 7}}{{25}}.\dfrac{1}{{\sqrt 5 }} = \dfrac{{41}}{{25\sqrt 5 }}\end{array}\) Bình luận
$0<\alpha<\dfrac{\pi}{2}$
$\Rightarrow \cos\alpha>0$, $\sin\dfrac{\alpha}{2}>0,\cos\dfrac{\alpha}{2}>0$
$\Rightarrow \cos\alpha=\sqrt{1-\sin^2\alpha}=\dfrac{3}{5}$
$\sin^2\dfrac{\alpha}{2}=\dfrac{1-\cos\alpha}{2}=\dfrac{1}{5}$
$\Rightarrow \sin\dfrac{\alpha}{2}=\dfrac{1}{\sqrt5}$
$\Rightarrow \cos\dfrac{\alpha}{2}=\dfrac{2}{\sqrt5}$
$\sin 2\alpha=2\sin\alpha.\cos\alpha=\dfrac{24}{25}$
$\cos 2\alpha=\cos^2\alpha-\sin^2\alpha=\dfrac{-7}{25}$
Vậy ta có:
$\sin\dfrac{5\alpha}{2}=\sin(\dfrac{\alpha}{2}+2\alpha)$
$=\sin\dfrac{\alpha}{2}.\cos2\alpha+\cos\dfrac{\alpha}{2}\sin2\alpha$
$=\dfrac{41}{125}$
Đáp án:
\[\sin \frac{{5\alpha }}{2} = \frac{{41}}{{25\sqrt 5 }}\]
Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
0 < \alpha < \dfrac{\pi }{2} \Rightarrow \left\{ \begin{array}{l}
\sin \alpha > 0\\
cos\alpha > 0
\end{array} \right.\\
{\sin ^2}\alpha + {\cos ^2}\alpha = 1\\
\cos \alpha > 0 \Rightarrow \cos \alpha = \sqrt {1 – {{\sin }^2}\alpha } = \dfrac{3}{5}\\
\tan \alpha = \dfrac{{\sin \alpha }}{{\cos \alpha }} = \dfrac{4}{3}\\
\sin 2\alpha = 2\sin \alpha .\cos \alpha = 2.\dfrac{4}{5}.\dfrac{3}{5} = \dfrac{{24}}{{25}}\\
\cos 2\alpha = 2{\cos ^2}\alpha – 1 = 2.{\left( {\dfrac{3}{5}} \right)^2} – 1 = – \dfrac{7}{{25}}\\
0 < \alpha < \dfrac{\pi }{2} \Rightarrow 0 < \dfrac{\alpha }{2} < \dfrac{\pi }{4} \Rightarrow \left\{ \begin{array}{l}
\sin \dfrac{\alpha }{2} > 0\\
\cos \dfrac{\alpha }{2} > 0
\end{array} \right.\\
\cos \alpha = 2{\cos ^2}\dfrac{\alpha }{2} – 1 = 1 – 2{\sin ^2}\dfrac{\alpha }{2} \Rightarrow \left\{ \begin{array}{l}
\sin \dfrac{\alpha }{2} = \dfrac{1}{{\sqrt 5 }}\\
\cos \dfrac{\alpha }{2} = \dfrac{2}{{\sqrt 5 }}
\end{array} \right.\\
\sin \dfrac{{5\alpha }}{2} = \sin \left( {2\alpha + \dfrac{\alpha }{2}} \right) = \sin 2\alpha .\cos \dfrac{\alpha }{2} + \cos 2\alpha .\sin \dfrac{\alpha }{2}\\
= \dfrac{{24}}{{25}}.\dfrac{2}{{\sqrt 5 }} + \dfrac{{ – 7}}{{25}}.\dfrac{1}{{\sqrt 5 }} = \dfrac{{41}}{{25\sqrt 5 }}
\end{array}\)