Cho số phức z = (2a-b+4)-(a+b+6)i, với a,b thuộc R , i là đơn vị ảo . Biết rằng z là số thuần ảo và z+2+i là số thực . Tính S =a^2+b^2. A. S=13

Cho số phức z = (2a-b+4)-(a+b+6)i, với a,b thuộc R , i là đơn vị ảo . Biết rằng z là số thuần ảo và z+2+i là số thực . Tính S =a^2+b^2.
A. S=13 B. S=5 C. S=20 D. S=36
giúp mik nha

0 bình luận về “Cho số phức z = (2a-b+4)-(a+b+6)i, với a,b thuộc R , i là đơn vị ảo . Biết rằng z là số thuần ảo và z+2+i là số thực . Tính S =a^2+b^2. A. S=13”

  1. Ta có: $z$ là số thuần ảo ⇒ $2a – b + 4 = 0$

    $z + 2 + i = (2a – b + 4) – (a + b + 6)i + 2 + i = (2a – b + 6) – (a +b + 5)i$

    $z + 2 + i$ là số thực ⇒ $a +b + 5 = 0$

    Ta được hệ:

    $\begin{cases}2a – b + 4 = 0\\a + b + 5 = 0\end{cases}$

    $\Leftrightarrow \begin{cases}a = -3\\b = -2\end{cases}$

    ⇒ $S = a^2 + b^2 = (-3)^2 + (-2)^2 = 13$

    ⇒ $\text{Đáp án A}$

     

    Bình luận

Viết một bình luận