Cho tam giác ABC cân tại A
Kẻ BH vuông góc với AC ,CK vuông góc với AB (H thuộc AC ,K thuộc AB )Biết Ab=10cm ,ac=6cm
a. Tính BH và BC
b. Chứng minh tam giác ABH= tam giác ACK
c lấy D thuộc Bc . Gọi E, F lần lượt là hình chiếu của điểm D trên AC và AB .Tính DE+DF
\\
+ TH1: Xét ΔABC vuông tại A có các đường cao AD, BA, CA.
BA, CA là hai đường cao xuất phát từ hai góc nhọn B và C của ΔABC.
AB = AC ⇒ ΔABC cân tại A (đpcm).
+ TH2: Xét ΔABC không có góc nào vuông, hai đường cao BD = CE (như hình vẽ minh họa)
Xét hai tam giác vuông EBC và DCB có :
BC (cạnh chung)
CE = BD (giả thiết)
⇒ ∆EBC = ∆DCB (cạnh huyền – cạnh góc vuông)
+ Xét ΔABC ba đường cao BD = CE = AF (như hình vẽ minh họa)
CE = BD ⇒ ΔABC cân tại A (như cmt) ⇒ AB = AC.
CE = AF ⇒ ΔABC cân tại B (như cmt) ⇒ AB = BC:
⇒ AB = AC = BC
⇒ ΔABC đều.