cho tam giác ABC có góc B= 90 độ. Vẽ đường trung tuyến AM. trên tia đối của tia MA lấy điểm E sao cho ME=AM
a) chứng minh tam giác ABM = tam giác ECM
b) chứng minh AB song song với CE
c) chứng minh AB>CE
d) so sánh góc BAM với góc MAC
giúp mik với tí nữa mik phải nộp rồi
a) Xét ΔABMΔABM và ΔECMΔECM, có:
MB=MC(AM là đường trung tuyến )
ABMˆ=EMCˆABM^=EMC^( 2 góc đối đỉnh )
MA=ME(gt)
⇒ΔABM=ΔEMC(c−g−c)⇒ΔABM=ΔEMC(c−g−c)
b) Vì ΔABM=ΔEMCΔABM=ΔEMC
⇒AB=EC⇒AB=EC
Vì ΔABCΔABC có Bˆ=900B^=900 nên Bˆ>CˆB^>C^
⇒AC>AB⇒AC>AB
Mà AB=EC ⇒⇒ AC>CE
c) Vì ΔABM=ΔECMΔABM=ΔECM
⇒ABMˆ=ECMˆ⇒ECMˆ=900⇒ABM^=ECM^⇒ECM^=900
⇒⇒ EC vuông góc BC