Cho tam giác ABC nhọn(AB { "@context": "https://schema.org", "@type": "QAPage", "mainEntity": { "@type": "Question", "name": " Cho tam giác ABC nhọn(AB
0 bình luận về “Cho tam giác ABC nhọn(AB<AC).Các đường cao AD,BE,CF cắt nhau tại H.Gọi M là trung điểm của BC,K đối xứng với H qua M.
a)Chứng minh BHCK là hình bình h”
Giải thích các bước giải:
a,
K đối xứng với H qua M nên M là trung điểm KH
Tứ giác BHCK có hai đường chéo BC và HK cắt nhau tại trung điểm M của mỗi đường nên BHCK là hình bình hành
b,
BHCK là hình bình hành nên BK//HC
Mà HC vuông góc với AB nên BK vuông góc với AB
c,
Gọi N là giao điểm của HI và BC thì N là trung điểm của HI
MN là đường trung bình trong tam giác HIK nên MN//IK
Hay IK//BC nên BIKC là hình thang
I đối xứng với H qua BC nên BN là đường trung trực của HI nên BH=BI
Giải thích các bước giải:
a,
K đối xứng với H qua M nên M là trung điểm KH
Tứ giác BHCK có hai đường chéo BC và HK cắt nhau tại trung điểm M của mỗi đường nên BHCK là hình bình hành
b,
BHCK là hình bình hành nên BK//HC
Mà HC vuông góc với AB nên BK vuông góc với AB
c,
Gọi N là giao điểm của HI và BC thì N là trung điểm của HI
MN là đường trung bình trong tam giác HIK nên MN//IK
Hay IK//BC nên BIKC là hình thang
I đối xứng với H qua BC nên BN là đường trung trực của HI nên BH=BI
BHCK là hình bình hành nên BH=CK
Suy ra BI=CK nên BIKC là hình thang cân
d,
HGKC là hình thang cân thì HG=CK=BH