Cho tam giác ABC,O là điểm cách đều ba cạnh. Trên tia BC lấy điểm M sao cho BM=BA Trên tia CB lấy điểm N sao cho CN=CA gọi D ,E,F, lần lượt là hình chiếu của O trên BC,CA,AB chứng minh rằng NE =MF
Mọi ng giúp em vs ạ cần gấp chiều nay em kiểm tra r ????????????
a) O cách đều 3 cạnh nên O là giao của 3 đường phân giác của Δ ABC
Xét Δ ABO và Δ MBO có: Cạnh BO chung, B1=B2,AB=BM⇒ Δ ABO = Δ MBO (c.g.c) ⇒ OA = OM (1)
Tương tự có Δ ACO = Δ NCO (c.g.c) ⇒ AO = ON (2).
Từ (1) và (2) ⇒ ON = OM hay Δ MON cân tại O.
Mà OD⊥ BC ⇒ OD vừa là đường cao vừa là đường phân giác ⇒ NOD=MOD.
Ta có: FOM^ =FOD+ MOD =1800−ABC+MOD
EON=3600−NOD−EOD= 3600−NOD^−(1800−ACB) = 1800+ACB−NOD
Ta chứng minh FOM=EON.
Thật vậy FOM=EON
⇔1800−ABC+MOD = 1800+ACB−NOD
⇔1800−(ABC+ACB)=1800−(NOD+MOD)
⇔BAC=ONM+OMN.
⇔A1+A2=ONM+OMN
Luôn đúng vì {A1=OMN(ΔABO=ΔMBO);A2=ONM(ΔAOC=ΔNOC)
Vậy ΔFOM=ΔEON (c.g.c)
⇒ FM = EN