Cho tam giác ABC,trên AC và BC lấy E và F sao cho AE = 1/3 AC,BF = 2/3 FC. AF cắt BE tại O
a) so sánh SABF và SAFC
b) so sánh SBEC và SABC
c) so sánh SABO và SAOE
d) so sánh BO và OE
Hơi dài nhưng các bạn giúp mình với
Cho tam giác ABC,trên AC và BC lấy E và F sao cho AE = 1/3 AC,BF = 2/3 FC. AF cắt BE tại O
a) so sánh SABF và SAFC
b) so sánh SBEC và SABC
c) so sánh SABO và SAOE
d) so sánh BO và OE
Hơi dài nhưng các bạn giúp mình với
Giải thích các bước giải:
a) $\frac{{{S_{ABF}}}}{{{S_{AFC}}}} = \frac{{h.BF}}{{h.FC}} = \frac{{BF}}{{FC}} = \frac{2}{3}$
b) $\frac{{{S_{BEC}}}}{{{S_{ABC}}}} = \frac{{EC}}{{AC}} = \frac{2}{3}$
c) Xét ΔBEC có: A∈EC, O∈BE, F∈BC
=> theo định lý Menelaus ta có:
$\begin{array}{l} \frac{{BO}}{{OE}}.\frac{{AE}}{{AC}}.\frac{{FC}}{{FB}} = 1\\ \Leftrightarrow \frac{{BO}}{{OE}}.\frac{1}{3}.\frac{3}{2} = 1\\ \Leftrightarrow \frac{{BO}}{{OE}} = 2\\ \Rightarrow \frac{{BO}}{{BE}} = \frac{2}{3} \end{array}$
=> $\frac{{{S_{ABO}}}}{{{S_{AOE}}}} = \frac{{BO}}{{OE}} = 2$
d) Theo cmt: $\frac{{BO}}{{OE}} = 2$