Cho tam giác cân tại A. Kẻ BD vuông AC, CE vuông AB (D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE.
a) Chứng minh hai tam giác ADB và AEC bằng nhau. Từ đó suy ra BD = EC.
b) Chứng minh OB = OC
c) Chứng minh ED // BC
d) Gọi M là trung điểm của BC. Chứng minh EM = DM = 1/2 BC
Giải nhanh ạ, em cần gấp.
Đáp án:
Giải thích các bước giải:
a/ Xét t/g vuông: t/g ABD và t/g ACE có:
AB = AC (gt)
Aˆ:chungA^:chung
=> t/g ABD = t/g ACE (cạnh huyền-góc nhọn)
=> BD = CE
b/ Vì AB = AC => t/g ABC cân tại A
=> ABCˆ=ACBˆABC^=ACB^
Xét 2 t/g vuông: t/g BEC và t/g CDB có:
BD = CE (ý a)
ABCˆ=ACBˆ(cmt)ABC^=ACB^(cmt)
=> t/g BEC = t/g CDB (cạnh góc vuông – góc nhọn kề)
=> BE = CD
Xét t/g OEB và t/g ODC có:
OEBˆ=ODCˆ=90o(gt)OEB^=ODC^=90o(gt)
BE = CD (cmt)
ABDˆ=ACEˆABD^=ACE^ (2 góc tương ứng do t/g ABD = t/g ACE)
=> t/g OEB = t/g ODC (g.c.g)
c/ xét t/g AOB và t/g AOC có:
AO: cạnh chung
AB = AC (gt)
OB = OC (2 cạnh tương ứng do t/g OEB = t/g ODC)
=> t/g AOB = t/g AOC (c.c.c)
=> OABˆ=OACˆOAB^=OAC^ (2 cạnh tương ứng)
=> AO là tia p/g của góc BAC
Đáp án:
a/ Xét t/g vuông: t/g ABD và t/g ACE có:
AB = AC (gt)
Aˆ:chungA^:chung
=> t/g ABD = t/g ACE (cạnh huyền-góc nhọn)
=> BD = CE
b/ Vì AB = AC => t/g ABC cân tại A
=> ABCˆ=ACBˆABC^=ACB^
Xét 2 t/g vuông: t/g BEC và t/g CDB có:
BD = CE (ý a)
ABCˆ=ACBˆ(cmt)ABC^=ACB^(cmt)
=> t/g BEC = t/g CDB (cạnh góc vuông – góc nhọn kề)
=> BE = CD
Xét t/g OEB và t/g ODC có:
OEBˆ=ODCˆ=90o(gt)OEB^=ODC^=90o(gt)
BE = CD (cmt)
ABDˆ=ACEˆABD^=ACE^ (2 góc tương ứng do t/g ABD = t/g ACE)
=> t/g OEB = t/g ODC (g.c.g)
c/ xét t/g AOB và t/g AOC có:
AO: cạnh chung
AB = AC (gt)
OB = OC (2 cạnh tương ứng do t/g OEB = t/g ODC)
=> t/g AOB = t/g AOC (c.c.c)
=> OABˆ=OACˆOAB^=OAC^ (2 cạnh tương ứng)
=> AO là tia p/g của góc BAC
Giải thích các bước giải: