Cho tanx – cot x = $\frac{3}{2}$ với $\pi$ 29/09/2021 Bởi Caroline Cho tanx – cot x = $\frac{3}{2}$ với $\pi$ { "@context": "https://schema.org", "@type": "QAPage", "mainEntity": { "@type": "Question", "name": " Cho tanx - cot x = $ frac{3}{2}$ với $ pi$
Đáp án: \(B = – 36 – 16\sqrt 5 \) Giải thích các bước giải: \(\begin{array}{l}Do:x \in \left( {\pi ;\dfrac{{3\pi }}{2}} \right)\\ \to \left\{ \begin{array}{l}\cos x < 0\\\sin x < 0\end{array} \right.\\\tan x – \cot x = \dfrac{3}{2}\\ \to \tan x – \dfrac{1}{{\tan x}} = \dfrac{3}{2}\\ \to \dfrac{{2{{\tan }^2}x – 3\tan x – 2}}{{2\tan x}} = 0\left( {\tan x \ne 0} \right)\\ \to 2{\tan ^2}x – 3\tan x – 2 = 0\\ \to \left[ \begin{array}{l}\tan x = 2\\\tan x = – \dfrac{1}{2}\end{array} \right.\\ \to \left[ \begin{array}{l}\sin x = 2\cos x\\\sin x = – \dfrac{1}{2}\cos x \to \cos x = – 2\sin x\end{array} \right.\\Do:{\sin ^2}x + {\cos ^2}x = 1\\ \to \left[ \begin{array}{l}4{\cos ^2}x + {\cos ^2}x = 1\\4{\sin ^2}x + {\sin ^2}x = 1\end{array} \right.\\ \to \left[ \begin{array}{l}{\cos ^2}x = \dfrac{1}{5}\\{\sin ^2}x = \dfrac{1}{5}\end{array} \right. \to \left[ \begin{array}{l}\cos x = – \dfrac{1}{{\sqrt 5 }} \to \sin x = – \dfrac{2}{{\sqrt 5 }}\\\sin x = – \dfrac{1}{{\sqrt 5 }} \to \cos x = \dfrac{1}{{2\sqrt 5 }}\left( {KTM} \right)\end{array} \right.\\ \to B = \dfrac{{2.2\cos x – 2}}{{\cos x + \dfrac{1}{2}}} = \left( {4\cos x – 2} \right):\left( {\dfrac{{2\cos x + 1}}{2}} \right)\\ \to B = \dfrac{{8\cos x – 4}}{{2\cos x + 1}}\\Thay:\cos x = – \dfrac{1}{{\sqrt 5 }} \to B = – 36 – 16\sqrt 5 \end{array}\) Bình luận
Đáp án:
\(B = – 36 – 16\sqrt 5 \)
Giải thích các bước giải:
\(\begin{array}{l}
Do:x \in \left( {\pi ;\dfrac{{3\pi }}{2}} \right)\\
\to \left\{ \begin{array}{l}
\cos x < 0\\
\sin x < 0
\end{array} \right.\\
\tan x – \cot x = \dfrac{3}{2}\\
\to \tan x – \dfrac{1}{{\tan x}} = \dfrac{3}{2}\\
\to \dfrac{{2{{\tan }^2}x – 3\tan x – 2}}{{2\tan x}} = 0\left( {\tan x \ne 0} \right)\\
\to 2{\tan ^2}x – 3\tan x – 2 = 0\\
\to \left[ \begin{array}{l}
\tan x = 2\\
\tan x = – \dfrac{1}{2}
\end{array} \right.\\
\to \left[ \begin{array}{l}
\sin x = 2\cos x\\
\sin x = – \dfrac{1}{2}\cos x \to \cos x = – 2\sin x
\end{array} \right.\\
Do:{\sin ^2}x + {\cos ^2}x = 1\\
\to \left[ \begin{array}{l}
4{\cos ^2}x + {\cos ^2}x = 1\\
4{\sin ^2}x + {\sin ^2}x = 1
\end{array} \right.\\
\to \left[ \begin{array}{l}
{\cos ^2}x = \dfrac{1}{5}\\
{\sin ^2}x = \dfrac{1}{5}
\end{array} \right. \to \left[ \begin{array}{l}
\cos x = – \dfrac{1}{{\sqrt 5 }} \to \sin x = – \dfrac{2}{{\sqrt 5 }}\\
\sin x = – \dfrac{1}{{\sqrt 5 }} \to \cos x = \dfrac{1}{{2\sqrt 5 }}\left( {KTM} \right)
\end{array} \right.\\
\to B = \dfrac{{2.2\cos x – 2}}{{\cos x + \dfrac{1}{2}}} = \left( {4\cos x – 2} \right):\left( {\dfrac{{2\cos x + 1}}{2}} \right)\\
\to B = \dfrac{{8\cos x – 4}}{{2\cos x + 1}}\\
Thay:\cos x = – \dfrac{1}{{\sqrt 5 }} \to B = – 36 – 16\sqrt 5
\end{array}\)