cho y=ax+b (d) . xác định a,b để (d) đi qua hai điểm A(1;3) và B(-3:-1) 24/08/2021 Bởi Reese cho y=ax+b (d) . xác định a,b để (d) đi qua hai điểm A(1;3) và B(-3:-1)
Đi qua điểm A(1;3) nên 3 = a + b và B(-3:-1) nên -1 = -3a + b => Ta có HPT 3 = a + b -1 = -3a + b => a = 1 b = 2 Bình luận
Đáp án: Ý 1: ĐTHS (d) song song với đường thẳng $y=2x-3$ nên a=2a=2 Mặt khác (d) đi qua A(−3;12)⇒12=a.(−3)+b=2(−3)+bA(−3;12)⇒12=a.(−3)+b=2(−3)+b ⇔b=132⇔b=132 PTĐT cần tìm: y=2x+132y=2x+132 Ý 2: (d): $y=ax+b$ song song với đường thẳng y=−x+4y=−x+4 ⇒a=−1⇒a=−1 Mặt khác (d) đi qua điểm (-3;1) nên: 1=a(−3)+b=(−1)(−3)+b1=a(−3)+b=(−1)(−3)+b ⇔b=−2⇔b=−2 PTĐT cần tìm: y=−x−2y=−x−2 Ý 3: Vì đường thẳng (d) cần tìm song song với đường thẳng y=2x−3⇒a=2y=2x−3⇒a=2 Mặt khác (d) đi qua điểm (13;43)(13;43) nên: 43=13a+b=13.2+b⇔b=2343=13a+b=13.2+b⇔b=23 Vậy PTĐT cần tìm là y=2x+23 Bình luận
Đi qua điểm A(1;3)
nên 3 = a + b
và B(-3:-1) nên
-1 = -3a + b
=> Ta có HPT
3 = a + b
-1 = -3a + b
=>
a = 1
b = 2
Đáp án:
Ý 1: ĐTHS (d) song song với đường thẳng $y=2x-3$ nên a=2a=2
Mặt khác (d) đi qua A(−3;12)⇒12=a.(−3)+b=2(−3)+bA(−3;12)⇒12=a.(−3)+b=2(−3)+b
⇔b=132⇔b=132
PTĐT cần tìm: y=2x+132y=2x+132
Ý 2: (d): $y=ax+b$ song song với đường thẳng y=−x+4y=−x+4
⇒a=−1⇒a=−1
Mặt khác (d) đi qua điểm (-3;1) nên:
1=a(−3)+b=(−1)(−3)+b1=a(−3)+b=(−1)(−3)+b
⇔b=−2⇔b=−2
PTĐT cần tìm: y=−x−2y=−x−2
Ý 3: Vì đường thẳng (d) cần tìm song song với đường thẳng y=2x−3⇒a=2y=2x−3⇒a=2
Mặt khác (d) đi qua điểm (13;43)(13;43) nên:
43=13a+b=13.2+b⇔b=2343=13a+b=13.2+b⇔b=23
Vậy PTĐT cần tìm là y=2x+23