Cho `x , y` là các số thực dương . Chứng minh rằng : `(x^4 + y^4)/((x + y)^4) + (√xy)/(x + y) ≥ 5/8`

Cho `x , y` là các số thực dương . Chứng minh rằng :
`(x^4 + y^4)/((x + y)^4) + (√xy)/(x + y) ≥ 5/8`

0 bình luận về “Cho `x , y` là các số thực dương . Chứng minh rằng : `(x^4 + y^4)/((x + y)^4) + (√xy)/(x + y) ≥ 5/8`”

  1. Đáp án:

     

    Giải thích các bước giải:

    `(x^4 + y^4)/(x + y)^4 + \sqrt{xy}/(x + y) ≥ 5/8`

    `<=>(x^4 + y^4+2x^2y^2)/(x + y)^4 + [\sqrt{xy}(x+y)^3]/(x + y)^4-(2x^2y^2)/(x + y)^4 ≥ 5/8`

    `<=>1+ [\sqrt{xy}(x+y)^3]/(x + y)^4-(2x^2y^2)/(x + y)^4 ≥ 5/8`

    `<=> [\sqrt{xy}(x+y)^3-2x^2y^2]/(x + y)^4 ≥ -3/8`

    Ta có

    `(\sqrt{xy}.(x+y)^3-2x^2y^2)/(x+y)^4 >=(\sqrt{xy}.(2\sqrt{xy})^3-2x^2y^2)/(x+y)^4=(6x^2y^2)/(x+y)^4`

    `(6x^2y^2)/(x+y)^4 >=-3/8`

    `<=>48x^2y^2>=-3(x+y)^4`

    `<=>(x+y)^4>=16x^2y^2`

    Đúng do `(x+y)^4>=(2\sqrt{xy})^4=16x^2y^2`

    `=>[\sqrt{xy}(x+y)^3-2x^2y^2]/(x + y)^4>=(6x^2y^2)/(x+y)^4>=-3/8`

    `=>(x^4 + y^4)/(x + y)^4 + \sqrt{xy}/(x + y) ≥ 5/8`

    Dấu `=` xảy ra `<=>x=y`

    Bình luận

Viết một bình luận