Cho x,y là hai số khác nhau thỏa mãn x ² – y = y ² -x.Tính giá trị của biểu thức : A= x ² + 2xy + y ² – 3x – 3y 31/07/2021 Bởi Quinn Cho x,y là hai số khác nhau thỏa mãn x ² – y = y ² -x.Tính giá trị của biểu thức : A= x ² + 2xy + y ² – 3x – 3y
Giải thích các bước giải: Ta có: $x^2-y=y^2-x$ $⇔ x^2-y^2+x-y=0$ $⇔ (x-y)(x+y)+(x-y)=0$ $⇔ (x-y)(x+y+1)=0$ $⇔ \left[ \begin{array}{l}x=y\\x+y=-1\end{array} \right.$ Vì x, y là 2 số khác nhau nên $x+y=-1$ $A=x^2+2xy+y^2-3x-3y$ $⇔ A=(x+y)^2-3(x+y)$ $⇔ A=(x+y)(x+y-3)$ $⇔ A=-1(-1-3)$ $⇔ A=-(-4)$ $⇔ A=4$ chúc bạn học tốt !! Bình luận
Đáp án: Ta có : `x^2 – y = y^2 – x` `<=> x^2 – y – y^2 + x = 0` ` <=> (x^2 – y^2) + (x – y) = 0` ` <=> (x – y)(x + y) + (x – y) = 0` ` <=> (x – y)(x+ y + 1) = 0` <=> \(\left[ \begin{array}{l}x – y = 0\\x + y + 1 = 0\end{array} \right.\) <=> \(\left[ \begin{array}{l}x = y\\x + y = -1\end{array} \right.\) Do x và y là 2 số khác nhau nên `=> x \ne y` `=> x + y = -1` Ta có : `A = x^2 + 2xy + y^2 – 3x – 3y` `= (x + y)^2 – 3(x + y)` ` = (-1)^2 – 3.(-1)` ` = 1 – (-3)` ` = 4 ` Giải thích các bước giải: Bình luận
Giải thích các bước giải:
Ta có: $x^2-y=y^2-x$
$⇔ x^2-y^2+x-y=0$
$⇔ (x-y)(x+y)+(x-y)=0$
$⇔ (x-y)(x+y+1)=0$
$⇔ \left[ \begin{array}{l}x=y\\x+y=-1\end{array} \right.$
Vì x, y là 2 số khác nhau
nên $x+y=-1$
$A=x^2+2xy+y^2-3x-3y$
$⇔ A=(x+y)^2-3(x+y)$
$⇔ A=(x+y)(x+y-3)$
$⇔ A=-1(-1-3)$
$⇔ A=-(-4)$
$⇔ A=4$
chúc bạn học tốt !!
Đáp án:
Ta có :
`x^2 – y = y^2 – x`
`<=> x^2 – y – y^2 + x = 0`
` <=> (x^2 – y^2) + (x – y) = 0`
` <=> (x – y)(x + y) + (x – y) = 0`
` <=> (x – y)(x+ y + 1) = 0`
<=> \(\left[ \begin{array}{l}x – y = 0\\x + y + 1 = 0\end{array} \right.\)
<=> \(\left[ \begin{array}{l}x = y\\x + y = -1\end{array} \right.\)
Do x và y là 2 số khác nhau nên `=> x \ne y`
`=> x + y = -1`
Ta có :
`A = x^2 + 2xy + y^2 – 3x – 3y`
`= (x + y)^2 – 3(x + y)`
` = (-1)^2 – 3.(-1)`
` = 1 – (-3)`
` = 4 `
Giải thích các bước giải: