Cho x/(y + z + t) = y/(z + t + x) = z/(t + x + y) = t/(x + y + z) Chứng minh P = (x + y)/(z + t) + (y + z)/(t + x) + (z + t)/(x + y) + (t + x)/(y + z) thuộc Z
Cho x/(y + z + t) = y/(z + t + x) = z/(t + x + y) = t/(x + y + z) Chứng minh P = (x + y)/(z + t) + (y + z)/(t + x) + (z + t)/(x + y) + (t + x)/(y + z) thuộc Z
Ta có: ` x/(y + z + t) = y/(z + t + x) = z/(t + x + y) = t/(x + y + z) `
`⇒ (x + y + z + t)/(y + z + t) = (y + z + t + x)/(z + t + x) = (z + t + x + y)/(t + x + y) = (t + x + y + z) /(x + y + z)`
`TH1: x + y + z + t = 0` ta có:
`+) x + y = – (z + t)`
`+) y + z = – (t + x)`
`+) z + t = – (x + y)`
`+) t + x = – (y + z)`
Khi đó: `P = (-1) + (-1) + (-1) + (-1) = -4` `(1)`
`TH2: x + y + z + t \ne 0` ta có:
`z + y + t = z + t + x = t + x + y = x + y + z`
`⇒ x = y = z = t`
Khi đó: `P = 1 + 1 + 1 + 1 = 4` `(2)`
Từ `(1)` và `(2)` suy ra: `P ∈ Z (đpcm)`
Đáp án:
`text{Từ :}` `x/(y + z + t) = y/(z + t + x) = z/(t + x + y) = t/(x + y + z)`
`⇔ (x + y + z + t)/(y + z + t) = (y + z + t + x)/(z + t + x) = (z + t + x + y)/(t + x + y)=(t + x + y + z)/(x + y+z)`
`text{Trường hợp 1 :}`
`x + y + z + t\ne 0`
`⇔ z + y + t = z + t + x = t + x + y = x + y + z`
`⇔ x =y = z = t`
`-> P = (x + x)/(x + x) + (y + y)/(y + y) + (z + z)/(z + z) + (t + t)/(t + t)`
`-> P = 1 + 1 + 1 + 1`
`-> P = 4 (1)`
`text{Trường hợp 2 :}`
`x + y + z + t = 0`
`⇔` \(\left\{ \begin{array}{l}(x + t) = – (z + t)\\ y + z = – (t + x)\\ z + t = – (x + y)\\t + x =- (y + z)\end{array} \right.\)
`-> P = [- (z + t)/(z + t)] + [- (t + x)/(t + x)] + [- (x + y)/(x + y)] + [- (y + z)/(y + z)]`
`-> P = -1 + (-1) + (-1) + (-1)`
`->P = -4 (2)`
`text{Từ (1) và (2)}`
`-> P ∈ ZZ`