cho;x/y+z+t=y/z+t+x=z/t+x+y=t/x+y+z cm.Tính giá trị biểu thức: P=(x+y/z+t)+(y+z/t+x)+(z+t/y+x)+(t+x/y+z)

cho;x/y+z+t=y/z+t+x=z/t+x+y=t/x+y+z
cm.Tính giá trị biểu thức: P=(x+y/z+t)+(y+z/t+x)+(z+t/y+x)+(t+x/y+z)

0 bình luận về “cho;x/y+z+t=y/z+t+x=z/t+x+y=t/x+y+z cm.Tính giá trị biểu thức: P=(x+y/z+t)+(y+z/t+x)+(z+t/y+x)+(t+x/y+z)”

  1. Áp dụng tính chất dãy các tỉ số bằng nhau, ta có:

    `x/(y + z + t) = y/(z + t + x) = z/(t + x + y) = t/(x + y + z)`

    `= (x + y + z + t)/(y + z + t + z + t + x + t + x + y + x + y + z)`

    `= (x + y + z + t)/(3x + 3y + 3z + 3t)`

    `= (x + y + z + t)/(3(x + y + z + t))`

    `= 1/3`

    `=>` \(\left\{\begin{matrix}\dfrac{x}{y+z+t}=\dfrac{1}{3}\\\dfrac{y}{z + t + x}=\dfrac{1}{3}\\\dfrac{z}{t + x + y}=\dfrac{1}{3}\\\dfrac{t}{x + y + z}=\dfrac{1}{3}\end{matrix}\right.\)

    `=>` \(\left\{\begin{matrix}3x=y+z+t\\3y=z+t+x\\3z=t+x+y\\3t=x+y+z\end{matrix}\right.\)

    `=>` \(\left\{\begin{matrix}4x=y+z+t+x\\4y=z+t+x+y\\4z=t+x+y+z\\4t=x+y+z+t\end{matrix}\right.\)

    `=> 4x = 4y = 4z = 4t`
    `=> x = y = z = t`
    `=>` \(\left\{\begin{matrix}\dfrac{x+y}{z+t}=1\\\dfrac{y+z}{ t + x}=1\\\dfrac{z+t}{y+x}=1\\\dfrac{t+x}{y + z}=1\end{matrix}\right.\)

    `=> (x + y)/(z + t) + (y + z)/(t + x) + (z + t)/(y + x) + (t + x)/(y + z) = 1 + 1 + 1 + 1 = 4`

    `=> P = 4`

    Vậy `P = 4`

    Bình luận
  2. Áp dụng tính chất dãy tỉ số bằng nhau:

    `x/(y + z + t) = y/(z + t + x) = z/(t + x + y) = t/(x + y + z) = (x + y + z + t)/(y + z + t + z + t + x + t + x + y + x + y + z) = (x + y + z + t)/(3 (x + y + z + t)) = 1/3`

    `=> 3x = y + z + t ; 3y = z + t + x ; 3z = x + y + t ; 3t = x + y + z`

    `=> 4x = x + y + z + t ; 4y = x + y + z + t ; 4z = x + y + z + t ; 4t = x + y + z + t`

    `=> 4x = 4y = 4z = 4t`

    `=> x = y = z = t`

    `=> P = (x + y)/(z + t) + (y + z)/(t + x) + (z + t)/(x + y) + (t + x)/(y + z) = 1 + 1 + 1 + 1 =4`

    Vậy `P = 4`.

    Bình luận

Viết một bình luận