Cho xyz=1.Tính M=x/xy+x+1 + y/yz+y+1 + z/zx+z+1

Cho xyz=1.Tính M=x/xy+x+1 + y/yz+y+1 + z/zx+z+1

0 bình luận về “Cho xyz=1.Tính M=x/xy+x+1 + y/yz+y+1 + z/zx+z+1”

  1. Đáp án: bằng 1 đó bạn à

     

    Giải thích các bước giải:

    \(M=\dfrac{x}{xy+x+1}+\dfrac{y}{yz+y+1}+\dfrac{z}{xz+z+1}\)

    \(=\dfrac{x}{xyz+xy+x}+\dfrac{y}{yz+y+1}+\dfrac{z}{xz+z+1}\)

    \(=\dfrac{1}{yz+y+1}+\dfrac{y}{yz+y+1}+\dfrac{z}{xz+z+1}\)

    \(=\dfrac{y+1}{yz+y+1}+\dfrac{z}{xz+z+1}=\dfrac{xyz+y}{xyz+yz+y}+\dfrac{z}{xz+z+1}\)

    \(=\dfrac{xz+1}{xz+z+1}+\dfrac{z}{xz+z+1}=\dfrac{xz+z+1}{xz+z+1}=1\)

     

    Bình luận
  2. $\dfrac{x}{xy+x+1}+\dfrac{y}{yz+y+1}+\dfrac{z}{zx+z+1}$

    $=\dfrac{x}{xy+x+xyz}+\dfrac{y}{yz+y+1}+\dfrac{z}{zx+z+xyz}$ (do $xyz=1$)

    $=\dfrac{x}{x(yz+y+1)}+\dfrac{y}{yz+y+1}+\dfrac{z}{z(x+1+xy)}$

    $=\dfrac{1}{yz+y+1}+\dfrac{y}{yz+y+1}+\dfrac{1}{x+1+xy}$

    $=\dfrac{1}{yz+y+1}+\dfrac{y}{yz+y+1}+\dfrac{xyz}{x+xyz+xy}$ Vì $xyz=1$

    $=\dfrac{1}{yz+y+1}+\dfrac{y}{yz+y+1}+\dfrac{xyz}{x(1+yz+y)}$

    $=\dfrac{1}{yz+y+1}+\dfrac{y}{yz+y+1}+\dfrac{yz}{1+yz+y}$

    $=\dfrac{yz+y+1}{yz+y+1}=1$

    Bình luận

Viết một bình luận