chứng minh (1/5*6 ) +(1/7*8) +…+(1/49*50)<1/4

chứng minh (1/5*6 ) +(1/7*8) +…+(1/49*50)<1/4

0 bình luận về “chứng minh (1/5*6 ) +(1/7*8) +…+(1/49*50)<1/4”

  1.   $\frac{1}{5.6}$ + $\frac{1}{6.7}$ + $\frac{1}{7.8}$ +…+ $\frac{1}{49.50}$

    = $\frac{1}{5}$ – $\frac{1}{6}$ + $\frac{1}{6}$ – $\frac{1}{7}$ + $\frac{1}{7}$ – $\frac{1}{8}$ +…+ $\frac{1}{49}$ – $\frac{1}{50}$  

    = $\frac{1}{5}$ – $\frac{1}{50}$ 

    = $\frac{9}{50}$< $\frac{1}{5}$ < $\frac{1}{4}$  

      => ĐPCM

    Bình luận
  2. Ta có:

    `\qquad 1/{5.6}+1/{6.7}+1/{7.8}+…+1/{48.49}+1/{49.50}`

    `= 1/5-1/6+1/6-1/7+1/7-1/8+…+1/{48}-1/{49}+1/{49}-1/{50}`

    `=1/5+(1/6-1/6)+(1/7-1/7)+…+(1/{49}-1/{49})-1/{50}`

    `=1/5-1/{50}={10}/{50}-1/{50}`

    `=9/{50}<{10}/{50}`

    `<1/5<1/4`

    $\\$

    Ta lại có:

    `\qquad 1/{5.6}+1/{7.8}+…+1/{49.50}`

    `<1/{5.6}+1/{6.7}+1/{7.8}+…+1/{49.50}<1/4`

    Vậy `1/{5.6}+1/{7.8}+…+1/{49.50}<1/4`

    Bình luận

Viết một bình luận