chứng minh (1/5*6 ) +(1/7*8) +…+(1/49*50)<1/4 09/07/2021 Bởi Genesis chứng minh (1/5*6 ) +(1/7*8) +…+(1/49*50)<1/4
$\frac{1}{5.6}$ + $\frac{1}{6.7}$ + $\frac{1}{7.8}$ +…+ $\frac{1}{49.50}$ = $\frac{1}{5}$ – $\frac{1}{6}$ + $\frac{1}{6}$ – $\frac{1}{7}$ + $\frac{1}{7}$ – $\frac{1}{8}$ +…+ $\frac{1}{49}$ – $\frac{1}{50}$ = $\frac{1}{5}$ – $\frac{1}{50}$ = $\frac{9}{50}$< $\frac{1}{5}$ < $\frac{1}{4}$ => ĐPCM Bình luận
Ta có: `\qquad 1/{5.6}+1/{6.7}+1/{7.8}+…+1/{48.49}+1/{49.50}` `= 1/5-1/6+1/6-1/7+1/7-1/8+…+1/{48}-1/{49}+1/{49}-1/{50}` `=1/5+(1/6-1/6)+(1/7-1/7)+…+(1/{49}-1/{49})-1/{50}` `=1/5-1/{50}={10}/{50}-1/{50}` `=9/{50}<{10}/{50}` `<1/5<1/4` $\\$ Ta lại có: `\qquad 1/{5.6}+1/{7.8}+…+1/{49.50}` `<1/{5.6}+1/{6.7}+1/{7.8}+…+1/{49.50}<1/4` Vậy `1/{5.6}+1/{7.8}+…+1/{49.50}<1/4` Bình luận
$\frac{1}{5.6}$ + $\frac{1}{6.7}$ + $\frac{1}{7.8}$ +…+ $\frac{1}{49.50}$
= $\frac{1}{5}$ – $\frac{1}{6}$ + $\frac{1}{6}$ – $\frac{1}{7}$ + $\frac{1}{7}$ – $\frac{1}{8}$ +…+ $\frac{1}{49}$ – $\frac{1}{50}$
= $\frac{1}{5}$ – $\frac{1}{50}$
= $\frac{9}{50}$< $\frac{1}{5}$ < $\frac{1}{4}$
=> ĐPCM
Ta có:
`\qquad 1/{5.6}+1/{6.7}+1/{7.8}+…+1/{48.49}+1/{49.50}`
`= 1/5-1/6+1/6-1/7+1/7-1/8+…+1/{48}-1/{49}+1/{49}-1/{50}`
`=1/5+(1/6-1/6)+(1/7-1/7)+…+(1/{49}-1/{49})-1/{50}`
`=1/5-1/{50}={10}/{50}-1/{50}`
`=9/{50}<{10}/{50}`
`<1/5<1/4`
$\\$
Ta lại có:
`\qquad 1/{5.6}+1/{7.8}+…+1/{49.50}`
`<1/{5.6}+1/{6.7}+1/{7.8}+…+1/{49.50}<1/4`
Vậy `1/{5.6}+1/{7.8}+…+1/{49.50}<1/4`