Chứng minh 4cosx/3.cos[(π+x)/3].cos[(π-x)/3]=cosx. 06/10/2021 Bởi Brielle Chứng minh 4cosx/3.cos[(π+x)/3].cos[(π-x)/3]=cosx.
$4\cos\dfrac{x}{3}.\cos\dfrac{\pi+x}{3}\cos\dfrac{\pi-x}{3}$ $=4\cos\dfrac{x}{3}.\dfrac{1}{2}\Big( \cos\dfrac{2\pi}{3}+\cos\dfrac{2x}{3}\Big)$ $=2\cos\dfrac{x}{3}\cos\dfrac{2x}{3}+2\cos\dfrac{x}{3}.\cos\dfrac{2\pi}{3}$ $=\cos x+\cos\dfrac{-x}{3}-\cos\dfrac{x}{3}$ $=\cos x$ Bình luận
Giải thích các bước giải: Ta có: \(\begin{array}{l}2\cos x.\cos y = \cos \left( {x + y} \right) + \cos \left( {x – y} \right)\\4\cos \dfrac{x}{3}.\cos \dfrac{{\pi + x}}{3}.\cos \dfrac{{\pi – x}}{3}\\ = 2\cos \dfrac{x}{3}.\left( {2\cos \dfrac{{\pi + x}}{3}.\cos \dfrac{{\pi – x}}{3}} \right)\\ = 2\cos \dfrac{x}{3}.\left[ {\cos \left( {\dfrac{{\pi + x}}{3} + \dfrac{{\pi – x}}{3}} \right) + \cos \left( {\dfrac{{\pi + x}}{3} – \dfrac{{\pi – x}}{3}} \right)} \right]\\ = 2\cos \dfrac{x}{3}.\left( {\cos \dfrac{{2\pi }}{3} + \cos \dfrac{{2x}}{3}} \right)\\ = 2\cos \dfrac{x}{3}.\left( { – \dfrac{1}{2} + \cos \dfrac{{2x}}{3}} \right)\\ = – \cos \dfrac{x}{3} + 2\cos \dfrac{x}{3}.\cos \dfrac{{2x}}{3}\\ = – \cos \dfrac{x}{3} + \cos \left( {\dfrac{x}{3} + \dfrac{{2x}}{3}} \right) + \cos \left( {\dfrac{x}{3} – \dfrac{{2x}}{3}} \right)\\ = – \cos \dfrac{x}{3} + \cos x + \cos \left( { – \dfrac{x}{3}} \right)\\ = – \cos \dfrac{x}{3} + \cos x + \cos \dfrac{x}{3}\\ = \cos x\end{array}\) Bình luận
$4\cos\dfrac{x}{3}.\cos\dfrac{\pi+x}{3}\cos\dfrac{\pi-x}{3}$
$=4\cos\dfrac{x}{3}.\dfrac{1}{2}\Big( \cos\dfrac{2\pi}{3}+\cos\dfrac{2x}{3}\Big)$
$=2\cos\dfrac{x}{3}\cos\dfrac{2x}{3}+2\cos\dfrac{x}{3}.\cos\dfrac{2\pi}{3}$
$=\cos x+\cos\dfrac{-x}{3}-\cos\dfrac{x}{3}$
$=\cos x$
Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
2\cos x.\cos y = \cos \left( {x + y} \right) + \cos \left( {x – y} \right)\\
4\cos \dfrac{x}{3}.\cos \dfrac{{\pi + x}}{3}.\cos \dfrac{{\pi – x}}{3}\\
= 2\cos \dfrac{x}{3}.\left( {2\cos \dfrac{{\pi + x}}{3}.\cos \dfrac{{\pi – x}}{3}} \right)\\
= 2\cos \dfrac{x}{3}.\left[ {\cos \left( {\dfrac{{\pi + x}}{3} + \dfrac{{\pi – x}}{3}} \right) + \cos \left( {\dfrac{{\pi + x}}{3} – \dfrac{{\pi – x}}{3}} \right)} \right]\\
= 2\cos \dfrac{x}{3}.\left( {\cos \dfrac{{2\pi }}{3} + \cos \dfrac{{2x}}{3}} \right)\\
= 2\cos \dfrac{x}{3}.\left( { – \dfrac{1}{2} + \cos \dfrac{{2x}}{3}} \right)\\
= – \cos \dfrac{x}{3} + 2\cos \dfrac{x}{3}.\cos \dfrac{{2x}}{3}\\
= – \cos \dfrac{x}{3} + \cos \left( {\dfrac{x}{3} + \dfrac{{2x}}{3}} \right) + \cos \left( {\dfrac{x}{3} – \dfrac{{2x}}{3}} \right)\\
= – \cos \dfrac{x}{3} + \cos x + \cos \left( { – \dfrac{x}{3}} \right)\\
= – \cos \dfrac{x}{3} + \cos x + \cos \dfrac{x}{3}\\
= \cos x
\end{array}\)