Giải thích các bước giải: $VP=1.3.5.7….99\\=\dfrac{(1.3.5.7…99).(2.4.6…100)}{2.4.6…100}\\=\dfrac{1.2.3.4.5.6….99.100}{2.4.6…100}\\=\dfrac{1.2.3.4.5.6…100}{(2.1).(2.2).(2.3).(2.4)….(2.50)}\\=\dfrac{(1.2.3…50).(50.51.52…100)}{(1.2.3…50).(2.2.2…2)}\\=\dfrac{51.52.53…100}{2.2.2…2}\\=\dfrac{51.52.53…100}{2^{50}}=VT\Rightarrow ĐPCM$ Bình luận
Giải thích các bước giải:
$VP=1.3.5.7….99\\
=\dfrac{(1.3.5.7…99).(2.4.6…100)}{2.4.6…100}\\
=\dfrac{1.2.3.4.5.6….99.100}{2.4.6…100}\\
=\dfrac{1.2.3.4.5.6…100}{(2.1).(2.2).(2.3).(2.4)….(2.50)}\\
=\dfrac{(1.2.3…50).(50.51.52…100)}{(1.2.3…50).(2.2.2…2)}\\
=\dfrac{51.52.53…100}{2.2.2…2}\\
=\dfrac{51.52.53…100}{2^{50}}=VT\Rightarrow ĐPCM$