Chứng minh A chia hết cho 101, biết A = 1.2.3.4…..99.100.(1+1/2+1/3+…+1/100)

Chứng minh A chia hết cho 101, biết A = 1.2.3.4…..99.100.(1+1/2+1/3+…+1/100)

0 bình luận về “Chứng minh A chia hết cho 101, biết A = 1.2.3.4…..99.100.(1+1/2+1/3+…+1/100)”

  1. A=1.2.3…..99.100.(1+1/2+1/3+…+1/99+1/100)

      =1.2.3…..99.100.[(1+1/100)+(1/2+1/99)+(1/3+1/98)+…+(1/50+1/51)]

      =1.2.3…..99.100.(101/100+101/2.99+101/3.98+…+101/50.51)

      =1.2.3…..99.100.101.(1/100+1/2.99+…+1/50.51)

    Vì 101:101⇒A:101(đpcm)

    Vậy số tự nhiên A chia hết cho 101

     

    Bình luận
  2. Giải thích các bước giải:

    Ta có:

    $B=1+\dfrac12+\dfrac13+…+\dfrac1{100}$

    $\to B=(1+\dfrac1{100})+(\dfrac12+\dfrac1{99})+(\dfrac13+\dfrac1{98})+….+(\dfrac1{50}+\dfrac1{51})$

    $\to B=(1+\dfrac1{100})+(\dfrac12+\dfrac1{99})+(\dfrac13+\dfrac1{98})+….+(\dfrac1{50}+\dfrac1{51})$

    $\to B=\dfrac{101}{1\cdot 100}+\dfrac{101}{2\cdot 99}+\dfrac{101}{3\cdot 98}+…+\dfrac{101}{50\cdot 51}$

    $\to B=101\cdot (\dfrac{1}{1\cdot 100}+\dfrac{1}{2\cdot 99}+\dfrac{1}{3\cdot 98}+…+\dfrac{1}{50\cdot 51})$

    Lại có:

    $A=1\cdot 2\cdot 3\cdot 4\cdots 99\cdot 100\cdot (1+\dfrac12+\dfrac13+…+\dfrac1{100})$

    $\to A=1\cdot 2\cdot 3\cdot 4\cdots 99\cdot 100\cdot 101\cdot (\dfrac{1}{1\cdot 100}+\dfrac{1}{2\cdot 99}+\dfrac{1}{3\cdot 98}+…+\dfrac{1}{50\cdot 51})$

    $\to A= 101\cdot (1\cdot 2\cdot 3\cdot 4\cdots 99\cdot 100\cdot (\dfrac{1}{1\cdot 100}+\dfrac{1}{2\cdot 99}+\dfrac{1}{3\cdot 98}+…+\dfrac{1}{50\cdot 51}))$

    Mà $ (1\cdot 2\cdot 3\cdot 4\cdots 99\cdot 100\cdot (\dfrac{1}{1\cdot 100}+\dfrac{1}{2\cdot 99}+\dfrac{1}{3\cdot 98}+…+\dfrac{1}{50\cdot 51}))\in Z$

    $\to A\quad\vdots\quad 101$

    Bình luận

Viết một bình luận