chứng minh C=5^1+5^2+5^3+5^4+…+5^2010 chia hết cho 6 và 31 chứng minh D=7^1+7^2+7^3+7^4+…+7^2010 chia hết cho 8 và 57 04/07/2021 Bởi Daisy chứng minh C=5^1+5^2+5^3+5^4+…+5^2010 chia hết cho 6 và 31 chứng minh D=7^1+7^2+7^3+7^4+…+7^2010 chia hết cho 8 và 57
$C=5+5^2+…+5^{2010}$ $⇒C=5(1+5)+…+5^{2009}(1+2)$ $⇒C=5.6+…+5^{2009}.6$ $⇒C=6.(5+…+5^{2009})\vdots 6$ $C=5+5^2+5^3+…+5^{2010}$ $⇒C=5(1+5+5^2)+…+5^{2008}.(1+5+5^2)$ $⇒C=5.31+…+2^{2008}.31$ $⇒C=31.(5+…+5^{2008})\vdots 31$ $D=7+7^2+…+7^{2010}$ $⇒C=7(1+7)+…+7^{2009}(1+7)$ $⇒C=7.8+…+7^{2009}.8$ $⇒C=8.(7+…+7^{2009})\vdots 8$ $C=7+7^2+7^3+…+7^{2010}$ $⇒C=7(1+7+7^2)+…+7^{2008}(1+7+7^2)$ $⇒C=7.57+…+7^{2008}.57$ $⇒C=57.(7+…+7^{2008})\vdots 57$ Bình luận
$C=5+5^2+…+5^{2010}$
$⇒C=5(1+5)+…+5^{2009}(1+2)$
$⇒C=5.6+…+5^{2009}.6$
$⇒C=6.(5+…+5^{2009})\vdots 6$
$C=5+5^2+5^3+…+5^{2010}$
$⇒C=5(1+5+5^2)+…+5^{2008}.(1+5+5^2)$
$⇒C=5.31+…+2^{2008}.31$
$⇒C=31.(5+…+5^{2008})\vdots 31$
$D=7+7^2+…+7^{2010}$
$⇒C=7(1+7)+…+7^{2009}(1+7)$
$⇒C=7.8+…+7^{2009}.8$
$⇒C=8.(7+…+7^{2009})\vdots 8$
$C=7+7^2+7^3+…+7^{2010}$
$⇒C=7(1+7+7^2)+…+7^{2008}(1+7+7^2)$
$⇒C=7.57+…+7^{2008}.57$
$⇒C=57.(7+…+7^{2008})\vdots 57$