Chứng minh: $cos\dfrac{\pi}{11} + cos\dfrac{3\pi}{11} + … + cos\dfrac{9\pi}{11}$ 07/12/2021 Bởi Brielle Chứng minh: $cos\dfrac{\pi}{11} + cos\dfrac{3\pi}{11} + … + cos\dfrac{9\pi}{11}$
Ta cminh $\cos \left( \dfrac{\pi}{11} \right) + \cos \left( \dfrac{3\pi}{11} \right) + \cdots + \cos \left( \dfrac{9\pi}{11} \right) = \dfrac{1}{2}$ $<-> 2\cos \left( \dfrac{\pi}{11} \right) + 2\cos \left( \dfrac{3\pi}{11} \right) + \cdots + 2\cos \left( \dfrac{9\pi}{11} \right) = 1$ Nhân cả hai vế với $\sin \left( \dfrac{\pi}{11} \right)$ ta cần cminh $2\cos \left( \dfrac{\pi}{11} \right) \sin \left( \dfrac{\pi}{11} \right) + 2\cos \left( \dfrac{3\pi}{11} \right) \sin \left( \dfrac{\pi}{11} \right) + \cdots + 2\cos \left( \dfrac{9\pi}{11} \right) \sin \left( \dfrac{\pi}{11} \right) = \sin \left( \dfrac{\pi}{11} \right)$ Ta có $VT = 2\cos \left( \dfrac{\pi}{11} \right) \sin \left( \dfrac{\pi}{11} \right) + 2\cos \left( \dfrac{3\pi}{11} \right) \sin \left( \dfrac{\pi}{11} \right) + \cdots + 2\cos \left( \dfrac{9\pi}{11} \right) \sin \left( \dfrac{\pi}{11} \right)$ Áp dụng biến đổi tích thành tổng ta có $VT = \sin \left( \dfrac{2\pi}{11} \right) + \sin \left( \dfrac{4\pi}{11} \right) – \sin\left( \dfrac{2\pi}{11} \right) + \sin \left( \dfrac{6\pi}{11} \right) – \sin \left( \dfrac{4\pi}{11} \right) + \cdots + \sin \left( \dfrac{10\pi}{11} \right) – \sin\left( \dfrac{8\pi}{11} \right)$ $= \sin \left( \dfrac{10\pi}{11} \right)$ $= \sin \left( \pi – \dfrac{\pi}{11} \right)$ $= \sin \left( \dfrac{\pi}{11} \right) = VP$ Vậy ta có đpcm Bình luận
Ta cminh
$\cos \left( \dfrac{\pi}{11} \right) + \cos \left( \dfrac{3\pi}{11} \right) + \cdots + \cos \left( \dfrac{9\pi}{11} \right) = \dfrac{1}{2}$
$<-> 2\cos \left( \dfrac{\pi}{11} \right) + 2\cos \left( \dfrac{3\pi}{11} \right) + \cdots + 2\cos \left( \dfrac{9\pi}{11} \right) = 1$
Nhân cả hai vế với $\sin \left( \dfrac{\pi}{11} \right)$ ta cần cminh
$2\cos \left( \dfrac{\pi}{11} \right) \sin \left( \dfrac{\pi}{11} \right) + 2\cos \left( \dfrac{3\pi}{11} \right) \sin \left( \dfrac{\pi}{11} \right) + \cdots + 2\cos \left( \dfrac{9\pi}{11} \right) \sin \left( \dfrac{\pi}{11} \right) = \sin \left( \dfrac{\pi}{11} \right)$
Ta có
$VT = 2\cos \left( \dfrac{\pi}{11} \right) \sin \left( \dfrac{\pi}{11} \right) + 2\cos \left( \dfrac{3\pi}{11} \right) \sin \left( \dfrac{\pi}{11} \right) + \cdots + 2\cos \left( \dfrac{9\pi}{11} \right) \sin \left( \dfrac{\pi}{11} \right)$
Áp dụng biến đổi tích thành tổng ta có
$VT = \sin \left( \dfrac{2\pi}{11} \right) + \sin \left( \dfrac{4\pi}{11} \right) – \sin\left( \dfrac{2\pi}{11} \right) + \sin \left( \dfrac{6\pi}{11} \right) – \sin \left( \dfrac{4\pi}{11} \right) + \cdots + \sin \left( \dfrac{10\pi}{11} \right) – \sin\left( \dfrac{8\pi}{11} \right)$
$= \sin \left( \dfrac{10\pi}{11} \right)$
$= \sin \left( \pi – \dfrac{\pi}{11} \right)$
$= \sin \left( \dfrac{\pi}{11} \right) = VP$
Vậy ta có đpcm