Chứng minh đa thức : f(x) = -4x^4 + 3x^3 – 2x^2 + x -1 ko có nghiệm nguyên. GIÚP MÌNH VỚI!!! NHANH Ạ!!

Chứng minh đa thức : f(x) = -4x^4 + 3x^3 – 2x^2 + x -1 ko có nghiệm nguyên.
GIÚP MÌNH VỚI!!! NHANH Ạ!!

0 bình luận về “Chứng minh đa thức : f(x) = -4x^4 + 3x^3 – 2x^2 + x -1 ko có nghiệm nguyên. GIÚP MÌNH VỚI!!! NHANH Ạ!!”

  1. Giải thích các bước giải:

    Giả sử tồn tại $x\in Z$ để $f(x)$ có nghiệm nguyên

    $\to -4x^4+3x^3-2x^2+x-1=0$

    $\to (-4x^4-2x^2)+(3x^3+x)-1=0$

    Ta có $(-4x^4-2x^2)$ chẵn

             $x, 3x^3$ cùng tính chẵn lẻ $\to 3x^3+x$ chẵn

    $\to (-4x^4-2x^2)+(3x^3+x)-1$ lẻ

    Mà $0$ chẵn

    $\to (-4x^4-2x^2)+(3x^3+x)-1=0$ vô lý

    $\to$Giả sử sai

    $\to$Đa thức trên không có nghiệm nguyên

    Bình luận

Viết một bình luận