Chứng minh đẳng thức sau: a. (tan2a-tana)(sin2a-tana)=tan^2a b. cota-tana-tan2a-4tan4a=8cot4a

Chứng minh đẳng thức sau:
a. (tan2a-tana)(sin2a-tana)=tan^2a
b. cota-tana-tan2a-4tan4a=8cot4a

0 bình luận về “Chứng minh đẳng thức sau: a. (tan2a-tana)(sin2a-tana)=tan^2a b. cota-tana-tan2a-4tan4a=8cot4a”

  1. Giải thích các bước giải:

     Ta có:

    \(\begin{array}{l}
    a,\\
    \left( {\tan 2a – \tan a} \right)\left( {\sin 2a – \tan a} \right)\\
     = \tan 2a.\sin 2a – \tan 2a.\tan a – \tan a.\sin 2a + {\tan ^2}a\\
     = \dfrac{{{{\sin }^2}2a}}{{\cos 2a}} – \dfrac{{\sin 2a.\sin a}}{{\cos 2a.\cos a}} – \dfrac{{\sin a.\sin 2a}}{{\cos a}} + {\tan ^2}a\\
     = \dfrac{{{{\sin }^2}2a.\cos a – \sin 2a.\sin a – \sin a.sin2a.\cos 2a}}{{\cos 2a.\cos a}} + {\tan ^2}a\\
     = \dfrac{{{{\left( {2\sin a.\cos a} \right)}^2}.\cos a – 2\sin a.\cos a.\sin a – \sin a.2\sin a.\cos a.\cos 2a}}{{\cos 2a.\cos a}} + {\tan ^2}a\\
     = \dfrac{{4{{\sin }^2}a.{{\cos }^3}a – 2{{\sin }^2}a.\cos a – 2{{\sin }^2}a.\cos a.\cos 2a}}{{\cos 2a.\cos a}} + {\tan ^2}a\\
     = \dfrac{{2.{{\sin }^2}a.\cos a.\left( {2{{\cos }^2}a – 1 – \cos 2a} \right)}}{{\cos 2a.\cos a}} + {\tan ^2}a\\
     = \dfrac{{2{{\sin }^2}a.\cos a.\left( {\cos 2a – \cos 2a} \right)}}{{\cos 2a.\cos a}} + {\tan ^2}a\\
     = 0 + {\tan ^2}a = {\tan ^2}a
    \end{array}\)

    Em xem lại đề câu b nhé!!

    Bình luận

Viết một bình luận