Ta có: `M=2+2^2+2^3+…+2^99+2^100` `M=2.1+2.2+2^2. 2+…++2^98. 2+2^99. 2` `M=2(1+2+2^2+…+2^98+2^99)\vdots2(1)` Ta có: `M=2+2^2+2^3+…+2^99+2^100` `M=(2+2^2)+(2^3+2^4)+…+(2^99+2^100)` `M=2(1+2)+2^3(1+2)+…+2^99(1+2)` `M=2.3+2^3. 3+…+2^99. 3` `M=3(2+2^3+…+2^99)\vdots3(2)` Vì ` Ư CLN(2;3)=1(3)` Từ `(1);(2);(3)=>M\vdots(2.3)` hay `M\vdots6(4)` Từ `(1);(2);(4)=>M\vdots2;3;6`
`M = 2 + 2^2 + 2^3 + …. + 2^99 + 2^100`
`M = ( 2 + 2^2 ) + ( 2^3 + 2^4 ) + …. + ( 2^99 + 2^100 )`
`M = 1 . ( 2 + 2^2 ) + 2^2 . ( 2 + 2^2 ) + …. + 2^98 . ( 2 + 2^2 )`
`M = ( 2 + 2^2 ) . ( 1 + 2^2 + …. + 2^98 )`
`M = 6 . ( 1 + 2^2 + …. + 2^98` ⋮ `6`
Mà `6 = 2 . 3`
`⇒ M` ⋮ `2 ; M` ⋮ `3`
Vậy , `M` chia hết cho cả `2 ; 3` và `6` ( Điều phải chứng minh )
Ta có:
`M=2+2^2+2^3+…+2^99+2^100`
`M=2.1+2.2+2^2. 2+…++2^98. 2+2^99. 2`
`M=2(1+2+2^2+…+2^98+2^99)\vdots2(1)`
Ta có:
`M=2+2^2+2^3+…+2^99+2^100`
`M=(2+2^2)+(2^3+2^4)+…+(2^99+2^100)`
`M=2(1+2)+2^3(1+2)+…+2^99(1+2)`
`M=2.3+2^3. 3+…+2^99. 3`
`M=3(2+2^3+…+2^99)\vdots3(2)`
Vì ` Ư CLN(2;3)=1(3)`
Từ `(1);(2);(3)=>M\vdots(2.3)` hay `M\vdots6(4)`
Từ `(1);(2);(4)=>M\vdots2;3;6`