chứng minh rằng: 1/26+1/27+1/28+1/29+…+1/50=1-1/2+1/3-1/4+…+1/49-1/50

chứng minh rằng: 1/26+1/27+1/28+1/29+…+1/50=1-1/2+1/3-1/4+…+1/49-1/50

0 bình luận về “chứng minh rằng: 1/26+1/27+1/28+1/29+…+1/50=1-1/2+1/3-1/4+…+1/49-1/50”

  1. $1/26+1/27+1/28+…+1/49+1/50=1-1/2+1/3-1…$
    $2/26+2/28+2/30+…+2/50=1-1/2+1/3-1…$
    $<=>1/13+1/14+1/15+…+1/25=1-1/2+1/3-1…$
    $<=>2/14+2/16+2/18+…2/24=1-1/2+1/3-1/…$
    $<=>1/7+1/8+1/9+…+1/12=1-1/2+1/3-1/4+…$
    $<=>2/8+2/10+2/12=1-1/2+1/3-1/4+1/5-1/6$
    $<=>1/4+1/5+1/6=1-1/2+1/3-1/4+1/5-1/6$
    $<=>2/4+2/6=1-1/2+1/3$
    $<=>1/2+1/3=1-1/2+1/3$
    $<=> 2/2 = 1$

    Xin hay nhất 

    Bình luận
  2. Giải thích các bước giải:

    Ta có:
    $1-\dfrac12+\dfrac13-\dfrac14+…+\dfrac1{49}-\dfrac1{50}$
    $=(1+\dfrac13+..+\dfrac1{49})-(\dfrac12+\dfrac14+…+\dfrac1{50})$

    $=(1+\dfrac13+..+\dfrac1{49})+(\dfrac12+\dfrac14+…+\dfrac1{50})-2(\dfrac12+\dfrac14+…+\dfrac1{50})$

    $=(1+\dfrac12+\dfrac13+…+\dfrac1{50})-(1+\dfrac12+…+\dfrac1{25})$

    $=\dfrac1{26}+\dfrac1{27}+…+\dfrac1{50}$

    Bình luận

Viết một bình luận