chứng minh rằng 1< a/a+b +b/b+c +c/c+a { "@context": "https://schema.org", "@type": "QAPage", "mainEntity": { "@type": "Question", "name": " chứng minh rằng 1< a/a+b +b/b+c +c/c+a
chứng minh rằng 1< a/a+b +b/b+c +c/c+a { "@context": "https://schema.org", "@type": "QAPage", "mainEntity": { "@type": "Question", "name": " chứng minh rằng 1< a/a+b +b/b+c +c/c+a
Đáp án:
Có : \(\left\{ \begin{array}{l}\dfrac{a}{a + b + c } < \dfrac{a}{a+b }\\ \dfrac{b}{a + b + c} < \dfrac{b}{b + c}\\ \dfrac{c}{a+b+c}<\dfrac{c}{c+a}\end{array} \right.\)
Cộng theo vế ta được :
`⇔ a/(a + b+c) + b/(a + b + c) + c/(a + b + c) < a/(a + b) + b/(b + c) + c/(c + a)`
`⇔ (a + b + c)/(a + b + c) < a/(a + b) + b/(b + c) + c/(c + a)`
`⇔ 1 < a/(a + b) + b/(b + c) + c/(c + a)` `(1)`
$\\$
$\\$
Mặt khác có : \(\left\{ \begin{array}{l}\dfrac{a}{a+b}<\dfrac{a + c}{a + b +c}\\ \dfrac{b}{b + c}<\dfrac{a + b}{a + b + c}\\ \dfrac{c}{a+c}<\dfrac{b+c}{a+b+c}\end{array} \right.\)
Cộng theo vế ta được :
`⇔ a/(a + b) + b/(b + c) + c/(a + c) < (a + c)/(a + b + c) + (a + b)/(a + b + c) + (b + c)/(a + b + c)`
`⇔ a/(a + b) + b/(b + c) + c/(a + c) < (a + c + a +b + b + c)/(a + b + c)`
`⇔ a/(a + b) + b/(b + c) + c/(a + c) < (2a + 2c + 2b)/(a + b + c)`
`⇔ a/(a + b) + b/(b + c) + c/(a + c) < (2 (a + b+c) )/(a + b +c)`
`⇔ a/(a + b) + b/(b + c) + c/(a + c) < 2` `(2)`
$\\$
$\\$
Từ `(1), (2)`
`->1 < a/(a + b) + b/(b + c) + c/(c + a) < 2`
áp dụng
`x/y<(x+z)/(y+z)`
`⇒(a)/(a+b+c)<a/(a+b)<(a+c)/(a+b+c)`
tương tự
`⇒(b)/(a+b+c)<b/(c+b)<(a+b)/(a+b+c)`
`⇒(c)/(a+b+c)<c/(a+c)<(b+c)/(a+b+c)`
`⇒(a)/(a+b+c)+(b)/(a+b+c)+(c)/(a+b+c)<c/(a+c)+b/(c+b)+a/(a+b)<(a+c)/(a+b+c)+(a+b)/(a+b+c)+(b+c)/(a+b+c)`
`⇒1<c/(a+c)+b/(c+b)+a/(a+b)<2`