Chứng minh rằng: 2 + 2^2 +2^3+…+2^100 vừa chia hết cho 31, vừa chia hết cho 5 24/08/2021 Bởi Jade Chứng minh rằng: 2 + 2^2 +2^3+…+2^100 vừa chia hết cho 31, vừa chia hết cho 5
$\text { Đặt }$ `A = 2 + 2^2 + 2^3 + … + 2^100` `⇒ A = (2 + 2^2 + 2^3 + 2^4) + …. + (2^97 + 2^98 + 2^99 + 2^100)` `⇒ A = 2 . (1 + 2 + 2^2 + 2^3) + …. + 2^97 . (1 + 2 + 2^2 + 2^3)` `⇒ A = 2 . 15 + … + 2^97 . 15` `⇒ A = 2 . 3 . 5 + … + 2^97 . 3 . 5` `⇒ A = 5 . (2 . 3 + … + 2^97 . 3)` $\vdots$ `5 (1)` $\text { Mặt khác, ta có: }$ `A = 2 + 2^2 + 2^3 + … + 2^100` `⇒ A = (2 + 2^2 + 2^3 + 2^4 + 2^5) + … + (2^96 + 2^97 + 2^98 + 2^99 + 2^100)` `⇒ A = 2 . (1 + 2 + 2^2 + 2^3 + 2^4) + …. + 2^97 . (1 + 2 + 2^2 + 2^3 + 2^4)` `⇒ A = 2 . 31 + … + 2^97 . 31` `⇒ A = 31 . (2 + … + 2^97)` $\vdots$ `31 (2)` `(1), (2) ⇒ đpcm` Bình luận
Đáp án: Ta có : $2 + 2^2 +2^3+…+2^100 $ $= (2 + 2^2 + 2^3 + 2^4 + 2^5) + ….. + (2^96 + 2^97 + 2^98 + 2^99 + 2^100)$ $= 2.(1 + 2 +2^2 + 2^3 + 2^4 ) + …. + 2^96( 1 + 2 + 2^2 + 2^3 + 2^4)$ $= 2 . 31 + …. + 2^96 . 31$ $= 31.(2 + … + 2^96) $chia hết cho 31 $2 + 2^2 +2^3+…+2^100 $ $= ( 2 + 2^2 + 2^3 + 2^4) + (2^3 + 2^4 + 2^5 + 2^6) + … + (2^97 + 2^98 + 2^99 + 2^100)$ $= 30 + 2^2(2 + 2^2 + 2^3 + 2^4) + …. + 2^96(2 + 2^2 + 2^3 + 2^4)$ $= 30 + 2^2.30 + … + 2^96 .30$ $= 30.(1+ 2^2 + 2^96) = 5 . 6 . (1 + 2^2 + 2^96) $chia hết cho 5 Giải thích các bước giải: Bình luận
$\text { Đặt }$ `A = 2 + 2^2 + 2^3 + … + 2^100`
`⇒ A = (2 + 2^2 + 2^3 + 2^4) + …. + (2^97 + 2^98 + 2^99 + 2^100)`
`⇒ A = 2 . (1 + 2 + 2^2 + 2^3) + …. + 2^97 . (1 + 2 + 2^2 + 2^3)`
`⇒ A = 2 . 15 + … + 2^97 . 15`
`⇒ A = 2 . 3 . 5 + … + 2^97 . 3 . 5`
`⇒ A = 5 . (2 . 3 + … + 2^97 . 3)` $\vdots$ `5 (1)`
$\text { Mặt khác, ta có: }$
`A = 2 + 2^2 + 2^3 + … + 2^100`
`⇒ A = (2 + 2^2 + 2^3 + 2^4 + 2^5) + … + (2^96 + 2^97 + 2^98 + 2^99 + 2^100)`
`⇒ A = 2 . (1 + 2 + 2^2 + 2^3 + 2^4) + …. + 2^97 . (1 + 2 + 2^2 + 2^3 + 2^4)`
`⇒ A = 2 . 31 + … + 2^97 . 31`
`⇒ A = 31 . (2 + … + 2^97)` $\vdots$ `31 (2)`
`(1), (2) ⇒ đpcm`
Đáp án:
Ta có :
$2 + 2^2 +2^3+…+2^100 $
$= (2 + 2^2 + 2^3 + 2^4 + 2^5) + ….. + (2^96 + 2^97 + 2^98 + 2^99 + 2^100)$
$= 2.(1 + 2 +2^2 + 2^3 + 2^4 ) + …. + 2^96( 1 + 2 + 2^2 + 2^3 + 2^4)$
$= 2 . 31 + …. + 2^96 . 31$
$= 31.(2 + … + 2^96) $chia hết cho 31
$2 + 2^2 +2^3+…+2^100 $
$= ( 2 + 2^2 + 2^3 + 2^4) + (2^3 + 2^4 + 2^5 + 2^6) + … + (2^97 + 2^98 + 2^99 + 2^100)$
$= 30 + 2^2(2 + 2^2 + 2^3 + 2^4) + …. + 2^96(2 + 2^2 + 2^3 + 2^4)$
$= 30 + 2^2.30 + … + 2^96 .30$
$= 30.(1+ 2^2 + 2^96) = 5 . 6 . (1 + 2^2 + 2^96) $chia hết cho 5
Giải thích các bước giải: