Chứng minh rằng a) 1/2^2+1/3^2+1/4^2+…+1/45^2<1 b) 1/5+1/6+1/7+....1/19<2 10/08/2021 Bởi Kinsley Chứng minh rằng a) 1/2^2+1/3^2+1/4^2+…+1/45^2<1 b) 1/5+1/6+1/7+....1/19<2
`a)` Ta có :`1/2^2 = 1/2.2 < 1/1.2``1/3^2 = 1/3.3 < 1/2.3``1/4^2 = 1/4.4 < 1/3.4``….``1/45^2 = 1/45.45 < 1/ 44.45``=> 1/2^2+1/3^2+1/4^2+…+1/45^2 < 1/1.2 + 1/2.3 + 1/3.4 + … + 1/44.45``=> 1/2^2+1/3^2+1/4^2+…+1/45^2<1 – 1/2 + 1/2 – 1/3 + 1/3- 1/4 + … + 1/44 -1/45``=> 1/2^2+1/3^2+1/4^2+…+1/45^2<1 -1/45``=> 1/2^2+1/3^2+1/4^2+…+1/45^2<1 ` `b) 1/5+1/6+1/7+…. + 1/19`` = (1/5 + 1/6 +1/7 +1/8 + 1/9) + (1/10 + 1/11 + 1/12 + …. + 1/19)`Ta thấy :`1/5 = 1/5``1/6 < 1/5``1/7 < 1/5``1/8 <1/5``1/9 < 1/5``=> 1/5 + 1/6 +1/7 +1/8 + 1/9 < 1/5 + 1/5 + 1/5 + 1/5 + 1/5``=> 1/5 + 1/6 +1/7 +1/8 + 1/9 < 5 . 1/5``=> 1/5 + 1/6 +1/7 +1/8 + 1/9 < 1 (1)` Ta thấy : `1/10 = 1/10` `1/11 < 1/10` `1/12 <1/10` `…..` `1/19 < 1/10` `=> 1/10 + 1/11 + 1/12 + …. + 1/19 < \underbrace{1/10 +1/10 + 1/10 + …+1/10}` có `10` số hạng `=> 1/10 + 1/11 + 1/12 + …. + 1/19 < 1/10 . 10` `=> 1/10 + 1/11 + 1/12 + …. + 1/19 < 1 (2)` Từ `(1)` và `(2)` suy ra : `(1/5 + 1/6 +1/7 +1/8 + 1/9 ) + (1/10 + 1/11 + 1/12 + …. + 1/19) < 1 + 1` `=> 1/5+1/6+1/7+…. + 1/19<2 ` Bình luận
`a)` Ta có :
`1/2^2 = 1/2.2 < 1/1.2`
`1/3^2 = 1/3.3 < 1/2.3`
`1/4^2 = 1/4.4 < 1/3.4`
`….`
`1/45^2 = 1/45.45 < 1/ 44.45`
`=> 1/2^2+1/3^2+1/4^2+…+1/45^2 < 1/1.2 + 1/2.3 + 1/3.4 + … + 1/44.45`
`=> 1/2^2+1/3^2+1/4^2+…+1/45^2<1 – 1/2 + 1/2 – 1/3 + 1/3- 1/4 + … + 1/44 -1/45`
`=> 1/2^2+1/3^2+1/4^2+…+1/45^2<1 -1/45`
`=> 1/2^2+1/3^2+1/4^2+…+1/45^2<1 `
`b) 1/5+1/6+1/7+…. + 1/19`
` = (1/5 + 1/6 +1/7 +1/8 + 1/9) + (1/10 + 1/11 + 1/12 + …. + 1/19)`
Ta thấy :
`1/5 = 1/5`
`1/6 < 1/5`
`1/7 < 1/5`
`1/8 <1/5`
`1/9 < 1/5`
`=> 1/5 + 1/6 +1/7 +1/8 + 1/9 < 1/5 + 1/5 + 1/5 + 1/5 + 1/5`
`=> 1/5 + 1/6 +1/7 +1/8 + 1/9 < 5 . 1/5`
`=> 1/5 + 1/6 +1/7 +1/8 + 1/9 < 1 (1)`
Ta thấy :
`1/10 = 1/10`
`1/11 < 1/10`
`1/12 <1/10`
`…..`
`1/19 < 1/10`
`=> 1/10 + 1/11 + 1/12 + …. + 1/19 < \underbrace{1/10 +1/10 + 1/10 + …+1/10}`
có `10` số hạng
`=> 1/10 + 1/11 + 1/12 + …. + 1/19 < 1/10 . 10`
`=> 1/10 + 1/11 + 1/12 + …. + 1/19 < 1 (2)`
Từ `(1)` và `(2)` suy ra :
`(1/5 + 1/6 +1/7 +1/8 + 1/9 ) + (1/10 + 1/11 + 1/12 + …. + 1/19) < 1 + 1`
`=> 1/5+1/6+1/7+…. + 1/19<2 `