Chứng minh rằng a/1/3+1/3^2+1/^3+…+1/3^99<1/2 b/1/3+1/3^2+1/3^3+...+1/3^100<3/4

Chứng minh rằng
a/1/3+1/3^2+1/^3+…+1/3^99<1/2 b/1/3+1/3^2+1/3^3+...+1/3^100<3/4

0 bình luận về “Chứng minh rằng a/1/3+1/3^2+1/^3+…+1/3^99<1/2 b/1/3+1/3^2+1/3^3+...+1/3^100<3/4”

  1. ` a) ` Đặt ` A = 1/3 + 1/3^2 + 1/3^3 + … + 1/3^{99} `

    Ta có:

    ` A = 1/3 + 1/3^2 + 1/3^3 + … + 1/3^{99} `

    ` <=> 3A = 1 + 1/3 + 1/3^2 + … + 1/3^{98} `

    ` <=> 3A – A = 1 + 1/3 + 1/3^2 + … + 1/3^{98} – 1/3 – 1/3^2 – 1/3^3 – … – 1/3^{99} `

    ` <=> 2A = 1 + (1/3 – 1/3) + (1/3^2 – 1/3^2) + … + (1/3^{98} – 1/3^{98}) – 1/3^{99} `

    ` <=> 2A = 1 – 1/3^{99} `

    ` <=> A = (1 – 1/3^{99}) : 2 = 1/2 – \frac{1}{2.3^{99}} `

    Do: ` 1/2 – \frac{1}{2.3^{99}} < 1/2 `

    ` => A < 1/2 ` ` (đpcm) `

    ` b) ` Đặt ` B = 1/3 + 1/3^2 + 1/3^3 + … + 1/3^{100} `

    Ta có:

    ` B = 1/3 + 1/3^2 + 1/3^3 + … + 1/3^{100} `

    ` <=> 3B = 1 + 1/3 + 1/3^2 + … + 1/3^{99} `

    ` <=> 3B – B = 1 + 1/3 + 1/3^2 + … + 1/3^{99} – 1/3 – 1/3^2 – 1/3^3 – … – 1/3^{100} `

    ` <=> 2B = 1 + (1/3 – 1/3) + (1/3^2 – 1/3^2) + … + (1/3^{99} – 1/3^{99}) – 1/3^{100} `

    ` <=> 2B = 1 – 1/3^{100} `

    ` <=> B = (1 – 1/3^{100}) : 2 = 1/2 – \frac{1}{2.3^{100}} `

    Do: ` 1/2 – \frac{1}{2.3^{100}} < 1/2 `

    Mà ` 1/2 = 2/4 < 3/4 `

    ` => 1/2 – \frac{1}{2.3^{100}} < 3/4 `

    ` => B < 3/4 ` ` (đpcm) `

    Bình luận
  2. Chứng minh rằng:

    a) 1/3 + 1/3^2 + 1/^3 + … + 1/3^99 < 1/2

    Ta đặt tổng 1/3 + 1/3^2 + 1/^3 + … + 1/3^99 là A. Ta có:

    A = 1/3 + 1/3^2 + 1/^3 + … + 1/3^99

    => 3A = 1 + 1/3 + 1/3^2 + 1/^3 + … + 1/3^98

    => 3A – A = 1 + 1/3 + 1/3^2 + 1/^3 + … + 1/3^98 – 1/3 + 1/3^2 + 1/^3 + … + 1/3^99

    => 2A = 1 + (1/3 – 1/3) + (1/3^2 – 1/3^2) + … + (1/3^98 – 1/3^98) – 1/3^99

    => 2A = 1 – 1/ 3^99

    => A = (1 – 1/3^99) : 2 = 1/2 – 1/2.3^99

    Vì 1/2 – 1/2.3^99 < 1/2

    Vậy: A < 1/2 (Đpcm)

    b) 1/3 + 1/3^2 + 1/3^3 + … + 1/3^100 < 3/4

    * Vì mình không làm kịp nên Câu b bạn làm tương tự giống như cách làm Câu a nhé!

     

    Bình luận

Viết một bình luận