Chứng minh rằng: $\frac{1}{2}$ +$\frac{1}{2²}$ + $\frac{1}{2^{3}}$ + $\frac{1}{2^{4}}$ +$\frac{1}{2^{5}}$+ $\frac{1}{2^{6}}$ + $\frac{1}{2^{7}}$ < 1

Chứng minh rằng:
$\frac{1}{2}$ +$\frac{1}{2²}$ + $\frac{1}{2^{3}}$ + $\frac{1}{2^{4}}$ +$\frac{1}{2^{5}}$+ $\frac{1}{2^{6}}$ + $\frac{1}{2^{7}}$ < 1 Trình bày bằng 3 cách

0 bình luận về “Chứng minh rằng: $\frac{1}{2}$ +$\frac{1}{2²}$ + $\frac{1}{2^{3}}$ + $\frac{1}{2^{4}}$ +$\frac{1}{2^{5}}$+ $\frac{1}{2^{6}}$ + $\frac{1}{2^{7}}$ < 1”

  1. C1: Ta có: $\frac{1}{2}$ +$\frac{1}{2²}$ + $\frac{1}{2^{3}}$ + $\frac{1}{2^{4}}$ +$\frac{1}{2^{5}}$+ $\frac{1}{2^{6}}$ + $\frac{1}{2^{7}}$ 

     = $\frac{2^{6}+2^{5}+2^{4}+2^{3}+2^{2}+2+1}{2^{7}}$ 

     = $\frac{64+32+16+8+4+2+1}{128}$ 

     = $\frac{127}{128}$ < 1

    Vậy  $\frac{1}{2}$ +$\frac{1}{2²}$ + $\frac{1}{2^{3}}$ + $\frac{1}{2^{4}}$ +$\frac{1}{2^{5}}$+ $\frac{1}{2^{6}}$ + $\frac{1}{2^{7}}$ <1

    C2:  $\frac{1}{2}$ +$\frac{1}{2²}$ + $\frac{1}{2^{3}}$ + $\frac{1}{2^{4}}$ +$\frac{1}{2^{5}}$+ $\frac{1}{2^{6}}$ + $\frac{1}{2^{7}}$

    = $\frac{1}{2}$ +$\frac{1}{4}$ + $\frac{1}{8}$ + $\frac{1}{16}$ +$\frac{1}{32}$+ $\frac{1}{64}$ + $\frac{1}{128}$

    = 1 – $\frac{1}{2}$ + $\frac{1}{2}$ – $\frac{1}{4}$ + $\frac{1}{4}$ – $\frac{1}{8}$ + $\frac{1}{8}$- $\frac{1}{16}$ +$\frac{1}{16}$ -$\frac{1}{32}$ +$\frac{1}{32}$ -$\frac{1}{64}$ +$\frac{1}{64 }$ -$\frac{1}{128}$ 

    = 1 – $\frac{1}{128}$

    = $\frac{127}{128}$ < 1

    Vậy  $\frac{1}{2}$ +$\frac{1}{2²}$ + $\frac{1}{2^{3}}$ + $\frac{1}{2^{4}}$ +$\frac{1}{2^{5}}$+ $\frac{1}{2^{6}}$ + $\frac{1}{2^{7}}$ < 1

    C3: Đặt A =  $\frac{1}{2}$ +$\frac{1}{2²}$ + $\frac{1}{2^{3}}$ + $\frac{1}{2^{4}}$ +$\frac{1}{2^{5}}$+ $\frac{1}{2^{6}}$ + $\frac{1}{2^{7}}$ 

    Ta có: 2A = 2( $\frac{1}{2}$ +$\frac{1}{2²}$ + $\frac{1}{2^{3}}$ + $\frac{1}{2^{4}}$ +$\frac{1}{2^{5}}$+ $\frac{1}{2^{6}}$ + $\frac{1}{2^{7}}$)

                    = 1 + $\frac{1}{2}$ +$\frac{1}{2^{2}}$ +…+$\frac{1}{2^{6}}$ 

    Suy ra : 2A – A = (1 + $\frac{1}{2}$ +$\frac{1}{2^{2}}$ +…+$\frac{1}{2^{6}}$ ) – (  $\frac{1}{2}$ +$\frac{1}{2²}$ +…+ $\frac{1}{2^{7}}$ )

    ⇒ A = 1 + $\frac{1}{2}$ +$\frac{1}{2^{2}}$ +…+$\frac{1}{2^{6}}$ – $\frac{1}{2}$ +$\frac{1}{2²}$ +…+ $\frac{1}{2^{7}}$

           = 1 – $\frac{1}{27}$ < 1

    Vậy A < 1 hay  $\frac{1}{2}$ +$\frac{1}{2²}$ + $\frac{1}{2^{3}}$ + $\frac{1}{2^{4}}$ +$\frac{1}{2^{5}}$+ $\frac{1}{2^{6}}$ + $\frac{1}{2^{7}}$ <1

    @Kimetsu No Yaiba

    Bình luận
  2. Đặt `A=1/2+1/2^2+1/2^3+1/2^4+1/2^5+1/2^6+1/2^7`

    `C_1:` `A=1/2+1/2^2+1/2^3+1/2^4+1/2^5+1/2^6+1/2^7`

    `⇒2A=1+1/2+1/2^2+1/2^3+1/2^4+1/2^5+1/2^6`

    `-`

         `A=`             `1/2+1/2^2+1/2^3+1/2^4+1/2^5+1/2^6+1/2^7`

    ___________________________________________________________________

         `A=1-1/2^7`

    `⇒A<1` `(đpcm)`

    `C_2:` `A=1/2+1/2^2+1/2^3+1/2^4+1/2^5+1/2^6+1/2^7`

    `-`

    `⇒1/2A=`       `1/2^2+1/2^3+1/2^4+1/2^5+1/2^6+1/2^7+1/2^8`

    ________________________________________________________________________

       `1/2A=1/2-1/2^8`

    `⇒1/2A<1/2`

    `⇒A<1` `(đpcm)`

    `C_3:` `A=1/2+1/2^2+1/2^3+1/2^4+1/2^5+1/2^6+1/2^7`

    `⇒A=2^6/2^7+2^5/2^7+2^4/2^7+2^3/2^7+2^2/2^7+2/2^7+1/2^7`

    `⇒A={1+2+2^2+2^3+2^4+2^5+2^6}/2^7`

    Đặt: `B=1+2+2^2+2^3+2^4+2^5+2^6`

    `⇒2B=2+2^2+2^3+2^4+2^5+2^6+2^7`

    `-`

      `B=1+2+2^2+2^3+2^4+2^5+2^6`

    _______________________________________________________

     `B=2^7-1`

    `⇒B<2^7`

    `⇒A<1` `(đpcm)`

    Bình luận

Viết một bình luận