Chứng minh rằng $\frac{2\sqrt{mn} }{\sqrt{m}+\sqrt{n}+\sqrt{m+n}}$=$\sqrt{m}$+$\sqrt{n}$-$\sqrt{m+n}$

Chứng minh rằng $\frac{2\sqrt{mn} }{\sqrt{m}+\sqrt{n}+\sqrt{m+n}}$=$\sqrt{m}$+$\sqrt{n}$-$\sqrt{m+n}$

0 bình luận về “Chứng minh rằng $\frac{2\sqrt{mn} }{\sqrt{m}+\sqrt{n}+\sqrt{m+n}}$=$\sqrt{m}$+$\sqrt{n}$-$\sqrt{m+n}$”

  1. $\dfrac{2\sqrt{mn} }{\sqrt{m}+\sqrt{n}+\sqrt{m+n}}$

    $=\dfrac{2\sqrt{mn}(\sqrt{m}+\sqrt{n}-\sqrt{m+n}) }{(\sqrt{m}+\sqrt{n}+\sqrt{m+n})(\sqrt{m}+\sqrt{n}-\sqrt{m+n})}$

    $= \dfrac{2\sqrt{mn}(\sqrt{m}+\sqrt{n}-\sqrt{m+n}) }{(\sqrt m + \sqrt n)^2 – (\sqrt{m+n})^2}$

    $= \dfrac{2\sqrt{mn}(\sqrt{m}+\sqrt{n}-\sqrt{m+n}) }{m + n + 2\sqrt{mn}- (m + n)}$

    $= \dfrac{2\sqrt{mn}(\sqrt{m}+\sqrt{n}-\sqrt{m+n}) }{2\sqrt{mn}}$

    $= \sqrt{m}+\sqrt{n}-\sqrt{m+n} \quad (đpcm)$

    Bình luận

Viết một bình luận