chứng minh rằng neu n là sô nguyen dương thì (2n)! < 2^(2n) * (n!)^2 28/08/2021 Bởi Brielle chứng minh rằng neu n là sô nguyen dương thì (2n)! < 2^(2n) * (n!)^2
Giải thích các bước giải: Với $n=1\to \begin{cases}\left(2\cdot 1\right)!=2!=2\\ 2^{2\cdot 1}\cdot \left(1!\right)^2=4\end{cases}$ $\to \left(2\cdot 1\right)!<2^{2\cdot 1}\cdot \left(1!\right)^2$ đúng Giả sử $n=k\to \left(2k\right)!<2^{2k}\cdot \left(k!\right)^2\left(*\right)$ đúng Ta cần chứng minh $n=k+1$ thì mệnh đề vẫn đúng $\to 2^{2\left(k+1\right)}\cdot \left(\left(k+1\right)!\right)^2>\left(2\left(k+1\right)\right)!$ Thật vậy ta có: $2^{2k+2}\left(\left(k+1\right)!\right)^2-\left(2k+2\right)!$ $=2^2\cdot 2^{2k}\left(\left(k+1\right)\cdot k!\right)^2-\left(2k+2\right)!$ $=4\cdot 2^{2k}\cdot\left(k+1\right)^2\cdot \left(k!\right)^2-\left(2k+2\right)!$ $=4\left(k+1\right)^2\cdot 2^{2k}\cdot \left(k!\right)^2-\left(2k+2\right)!$ $>4\left(k+1\right)^2\cdot\left(2k\right)!-\left(2k+2\right)!\left(*\right)$ $>\left(2k+2\right)^2\cdot\left(2k\right)!-\left(2k+2\right)!$ $>\left(2k+1\right)\cdot \left(2k+2\right)\cdot\left(2k\right)!-\left(2k+2\right)!$ $>\left(2k+2\right)!-\left(2k+2\right)!$ $>0$ $\to 2^{2k+2}\left(\left(k+1\right)!\right)^2>\left(2k+2\right)!$ $\to n=k+1$ đúng $\to$Giả sử đúng Bình luận
Giải thích các bước giải:
Với $n=1\to \begin{cases}\left(2\cdot 1\right)!=2!=2\\ 2^{2\cdot 1}\cdot \left(1!\right)^2=4\end{cases}$
$\to \left(2\cdot 1\right)!<2^{2\cdot 1}\cdot \left(1!\right)^2$ đúng
Giả sử $n=k\to \left(2k\right)!<2^{2k}\cdot \left(k!\right)^2\left(*\right)$ đúng
Ta cần chứng minh $n=k+1$ thì mệnh đề vẫn đúng
$\to 2^{2\left(k+1\right)}\cdot \left(\left(k+1\right)!\right)^2>\left(2\left(k+1\right)\right)!$
Thật vậy ta có:
$2^{2k+2}\left(\left(k+1\right)!\right)^2-\left(2k+2\right)!$
$=2^2\cdot 2^{2k}\left(\left(k+1\right)\cdot k!\right)^2-\left(2k+2\right)!$
$=4\cdot 2^{2k}\cdot\left(k+1\right)^2\cdot \left(k!\right)^2-\left(2k+2\right)!$
$=4\left(k+1\right)^2\cdot 2^{2k}\cdot \left(k!\right)^2-\left(2k+2\right)!$
$>4\left(k+1\right)^2\cdot\left(2k\right)!-\left(2k+2\right)!\left(*\right)$
$>\left(2k+2\right)^2\cdot\left(2k\right)!-\left(2k+2\right)!$
$>\left(2k+1\right)\cdot \left(2k+2\right)\cdot\left(2k\right)!-\left(2k+2\right)!$
$>\left(2k+2\right)!-\left(2k+2\right)!$
$>0$
$\to 2^{2k+2}\left(\left(k+1\right)!\right)^2>\left(2k+2\right)!$
$\to n=k+1$ đúng
$\to$Giả sử đúng