Chứng minh rằng với giá trị x và y khác 0 thì biểu thức
B=(x+1/x)^2+(y+1/y)^2+(xy+1/xy)^2-(x+1/x)(x+1/y)(xy+1/xy) không phụ thuộc vào x và y
giải giúp mình cái
Chứng minh rằng với giá trị x và y khác 0 thì biểu thức
B=(x+1/x)^2+(y+1/y)^2+(xy+1/xy)^2-(x+1/x)(x+1/y)(xy+1/xy) không phụ thuộc vào x và y
giải giúp mình cái
Giải thích các bước giải:
$B=(x+\dfrac{1}{x})^2+(y+\dfrac{1}{y})^2+(xy+\dfrac{1}{xy})^2-(x+\dfrac{1}{x})(y+\dfrac{1}{y})(xy+\dfrac{1}{xy})$
$\to B=x^2+2+\dfrac{1}{x^2}+y^2+2+\dfrac{1}{y^2}+x^2y^2+2+\dfrac{1}{x^2y^2}-x^2y^2-2-x^2-y^2-\dfrac{1}{y^2}-\dfrac{1}{x^2}-\dfrac{1}{x^2y^2}$
$\to B=x^2y^2-x^2y^2+x^2-x^2+1\cdot \dfrac{1}{x^2}+1\cdot \dfrac{1}{x^2y^2}-1\cdot \dfrac{1}{x^2}-1\cdot \dfrac{1}{x^2y^2}+1\cdot \dfrac{1}{y^2}-1\cdot \dfrac{1}{y^2}+y^2-y^2+2+2+2-2$
$\to B=4$
Đáp án:
\[B={\bigg(x+\dfrac{1}{x}\bigg)}^2+{\bigg(y+\dfrac{1}{y}\bigg)}^2+{\bigg(xy+\dfrac{1}{xy}\bigg)}^2-\bigg(x+\dfrac{1}{x}\bigg)\bigg(y+\dfrac{1}{y}\bigg)\bigg(xy+\dfrac{1}{xy}\bigg)\] \[B=x^2+2+\dfrac{1}{x^2}+y^2+2+\dfrac{1}{y^2}+x^2y^2+\dfrac{1}{x^2y^2}+2-x^2y^2-2-x^2-y^2-\dfrac{1}{y^2}-\dfrac{1}{x^2}-\dfrac{1}{x^2y^2}=4\]