Chứng tỏ x mũ 2 + 4x + 9/2 > 0 với mọi x

Chứng tỏ x mũ 2 + 4x + 9/2 > 0 với mọi x

0 bình luận về “Chứng tỏ x mũ 2 + 4x + 9/2 > 0 với mọi x”

  1. Đáp án + Giải thích các bước giải:

    `x^{2}+4x+(9)/(2)`

    `=(x^{2}+4x+4)+(1)/(2)`

    `=(x+2)^{2}+(1)/(2)`

    Vì `(x+2)^{2}≥0  ∀x`

    `->(x+2)^{2}+(1)/(2)>0  ∀x`

    Vậy `x^{2}+4x+(9)/(2)>0  ∀x`

    Bình luận
  2. Đáp án + Giải thích các bước giải:

    `x^2+4x+9/2`

    `=>x^2+4x+8/2+1/2`

    `=>(x^2+4x+4)+1/2`

    `=>(x+2)^2+1/2`

    Với mọi `x` ta có `(x+2)^2\ge0`

    `=>(x+2)^2+1/2>0`

    Vậy với mọi `x` ta có `x^2+4x+9/2>0`

     

    Bình luận

Viết một bình luận