chứng tỏ rằng: 3/1.2.3+5/2.3.4+7/3.4.5+…+ 2017/1008.1009.1010<5/4

chứng tỏ rằng: 3/1.2.3+5/2.3.4+7/3.4.5+…+ 2017/1008.1009.1010<5/4

0 bình luận về “chứng tỏ rằng: 3/1.2.3+5/2.3.4+7/3.4.5+…+ 2017/1008.1009.1010<5/4”

  1. Gọi `A = 3/(1.2.3) + 5/(2.3.4) + 7/(3.4.5) + … +  2017/(1008.1009.1010)`

    `⇒ A = 2/(1.2.3) + 1/(1.2.3) + 4/(2.3.4) + 1/(2.3.4) + 6/(3.4.5) + 1/(3.4.5) + … + 2016/(1008.1009.1010) + 1/(1008.1009.1010)`

    `= ( 2/(1.2.3) + 4/(2.3.4) + 6/(3.4.5) + … + 2016/(1008.1009.1010) ) + ( 1/(1.2.3) + 1/(2.3.4) + 1/(3.4.5) + … + 1/(1008.1009.1010) )`

    `= ( (1.2)/(1.2.3) + (2.2)/(2.3.4) + (3.2)/(3.4.5) + … + (1008.2)/(1008.1009.1010) ) + 1/2.(2/(1.2.3) + 2/(2.3.4) + 2/(3.4.5) + … + 2/(1008.1009.1010) )`

    `= ( 2/(2.3) + 2/(3.4) + 2/(4.5) + … + 2/(1009.1010) ) + 1/2. ( 1/(1.2) – 1/(2.3) + 1/(2.3) – 1/(3.4) + 1/(3.4) – 1/(4.5) + … + 1/(1008.1009) – 1/(1009.1010) )`

    `= 2. ( 1/(2.3) + 1/(3.4) + 1/(4.5) + … + 1/(1009.1010) ) + 1/2. ( 1/(1.2) – 1/(1009.1010) )`

    `= 2. ( 1/2 – 1/3 + 1/3 -1/4 + 1/4 – 1/5 + … + 1/1009 – 1/1010) + 1/2. ( 1 – 1/2 – 1/(1009.1010)) `

    `= 2. (1/2 – 1/1010) + 1/2. (1/2 – 1/(1009.1010) )`

    Vì `1/2 – 1/1010 < 1/2;           1/2 – 1/(1009.1010) < 1/2`
    `⇒ 2. (1/2 – 1/1010) < 1;        1/2. (1/2 – 1/(1009. 1010)) < 1/4`
    `⇒ 2. (1/2 – 1/1010) + 1/2. (1/2 – 1/(1009. 1010) ) < 1 + 1/4`

    `⇒ A < 5/4`

    `⇒đpcm`

    Bình luận
  2. Giải thích các bước giải:

    Đặt `A = 3/(1.2.3) + 5/(2.3.4) + 7/(3.4.5) +…+ 2017/(1008.1009.1010)`

    `=> A = (2/(1.2.3) + 1/(1.2.3)) + (4/(2.3.4) + 1/(2.3.4)) + (6/(3.4.5) + 1/(3.4.5)) + … + (2016/(1008.1009.1010) + 1/(1008.1009.1010))`

    `=> A = (2/(1.2.3) + 4/(2.3.4) +6/(3.4.5) +….+ 2016/(1008.1009.1010))+(1/(1.2.3) + 1/(2.3.4)+ 1/(3.4.5)+…+1/(1008.1009.1010))`

    `=> A = ((1.2)/(1.2.3)+ (2.2)/(2.3.4) +(2.3)/(3.4.5) +….+ (1008.2)/(1008.1009.1010)) + 1/2.(2/(1.2.3) + 2/(2.3.4)+ 2/(3.4.5)+…+2/(1008.1009.1010))`

    `=> A = ( 2/2.3 + 2/3.4 + 2/4.5 + … + 2/1009.10010) + 1/2. (1/1.2 – 1/2.3 + 1/2.3 – 1/3.4 + 1/3.4 – 1/4.5 + … + 1/1008.1009 – 1/1009.1010)`

    `=> A = 2.(1/2.3 + 1/3.4 + 1/4.5 + … + 1/1009.1010)+ 1/2. (1/1.2 – 1/2.3 + 1/2.3 – 1/3.4 + 1/3.4 – 1/4.5 + … + 1/1008.1009 – 1/1009.1010)`

    `=> A = 2.(1/2-1/3+1/3-1/4+1/4-1/5+…+1/1009-1/1010) + 1/2.(1/1.2 – 1/1009.1010)`

    `=> A = 2.(1/2-1/1010) + 1/2.(1/2-1/1009.1010)`

    Vì `2.(1/2-1/1010) = 2 . 1/2 – 2 . 1/1010 < 2 . 1/2`

    `1/2.(1/2-1/1009.1010) = 1/2 . 1/2 – 1/2 . 1/1009.1010 < 1/2 . 1/2`

    `=> A < 2 . 1/2 + 1/2 . 1/2`

    `=> A < 1+1/4 = 5/4`

    `=> A < 5/4(đpcm)`

    Bình luận

Viết một bình luận