Chứng tỏ rằng: A= 1/1.2.3 + 1/2.3.4 +1/3.4.5+….+1/20.21.22 > 57/231

Chứng tỏ rằng:
A= 1/1.2.3 + 1/2.3.4 +1/3.4.5+….+1/20.21.22 > 57/231

0 bình luận về “Chứng tỏ rằng: A= 1/1.2.3 + 1/2.3.4 +1/3.4.5+….+1/20.21.22 > 57/231”

  1. Ta có : $A = \dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+….+\dfrac{1}{20.21.22}$

    $\to 2A = \dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+….+\dfrac{2}{20.21.22}$

     $ = \dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+….+\dfrac{1}{20.21}-\dfrac{1}{21.22}$

    $ = \dfrac{1}{1.2}-\dfrac{1}{21.22}$

    $ = \dfrac{1}{2} – \dfrac{1}{462} = \dfrac{115}{231}$

    $\to A = \dfrac{115}{462} > \dfrac{114}{462} = \dfrac{57}{231}$

    Bình luận
  2. Giải thích các bước giải:

     $A=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+…+\dfrac{1}{20.21.22}\\
    \dfrac{1}{1.2}-\dfrac{1}{2.3}=\dfrac{2}{1.2.3}\\
    \dfrac{1}{2.3}-\dfrac{1}{3.4}=\dfrac{2}{2.3.4}\\
    \dfrac{1}{3.4}-\dfrac{1}{4.5}=\dfrac{2}{3.4.5}\\
    …\\
    \dfrac{1}{20.21}-\dfrac{1}{21.22}=\dfrac{2}{20.21.22}\\
    \Rightarrow 2A=\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+\dfrac{2}{3.4.5}+…+\dfrac{2}{20.21.22}\\
    =\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+…+\dfrac{1}{20.21}-\dfrac{1}{21.22}\\
    =\dfrac{1}{2}-\dfrac{1}{21.22}\\
    =\dfrac{231}{462}-\dfrac{1}{462}=\dfrac{230}{462}=\dfrac{115}{231}\\
    \Rightarrow A=\dfrac{115}{231}.\dfrac{1}{2}=\dfrac{115}{462}\\
    \dfrac{57}{231}=\dfrac{114}{462}$
    Vì $114<115\Rightarrow \dfrac{114}{462}<\dfrac{115}{462}$
    Vậy $A>\dfrac{57}{231}$

    Bình luận

Viết một bình luận