CM: S=$\frac{1}{2^{2}}$+$\frac{1}{3^{2}}$+$\frac{1}{4^{2}}$+…+ $\frac{1}{2020^{2}}$<1 11/09/2021 Bởi Parker CM: S=$\frac{1}{2^{2}}$+$\frac{1}{3^{2}}$+$\frac{1}{4^{2}}$+…+ $\frac{1}{2020^{2}}$<1
Đáp án:+Giải thích các bước giải: S=$\frac{1}{2^{2}}$+$\frac{1}{3^{2}}$+$\frac{1}{4^{2}}$+…+ $\frac{1}{2020^{2}}$ Ta có: + $\frac{1}{2^{2}}$<$\frac{1}{1.2}$ + $\frac{1}{3^{2}}$<$\frac{1}{2.3}$ + $\frac{1}{4^{2}}$<$\frac{1}{3.4}$ + ……………………. +$\frac{1}{2020^{2}}$<$\frac{1}{2019.2020}$ S<$\frac{1}{1.2}$+$\frac{1}{2.3}$+$\frac{1}{3.4}$+…+$\frac{1}{2019.2020}$<1 S<1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{2019}$-$\frac{1}{2020}$ S<1-$\frac{1}{2020}$<1 S<$\frac{2019}{2020}$<1 =>S<1 (ĐPCM) Xin ctrl hay nhất Bình luận
Đáp án:+Giải thích các bước giải:
S=$\frac{1}{2^{2}}$+$\frac{1}{3^{2}}$+$\frac{1}{4^{2}}$+…+ $\frac{1}{2020^{2}}$
Ta có:
+ $\frac{1}{2^{2}}$<$\frac{1}{1.2}$
+ $\frac{1}{3^{2}}$<$\frac{1}{2.3}$
+ $\frac{1}{4^{2}}$<$\frac{1}{3.4}$
+ …………………….
+$\frac{1}{2020^{2}}$<$\frac{1}{2019.2020}$
S<$\frac{1}{1.2}$+$\frac{1}{2.3}$+$\frac{1}{3.4}$+…+$\frac{1}{2019.2020}$<1
S<1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{2019}$-$\frac{1}{2020}$
S<1-$\frac{1}{2020}$<1
S<$\frac{2019}{2020}$<1
=>S<1 (ĐPCM)
Xin ctrl hay nhất