CMR:;1/3+2/3^2+3/3^3+….+100/3^100<3/4 Giúp mk vs.

CMR:;1/3+2/3^2+3/3^3+….+100/3^100<3/4 Giúp mk vs.

0 bình luận về “CMR:;1/3+2/3^2+3/3^3+….+100/3^100<3/4 Giúp mk vs.”

  1. Đáp án:

     A = 1/3+2/3^2+3/3^3+….+100/3^100  (1)

    => 3A = 1 + 2/3 + 3/3^2 + …. + 100/3^99 (2)

    Lấy (2) – (1)ta đc

    2A = 1 + 1/3 + 1/3^2 + … + 1/3^99 – 100/3^100

    Đặt B = 1/3 + 1/3^2 + … + 1/3^99 (3)

    => 3B = 1 + 1/3  + …. + 1/3^98  (4)

    Lấy (4) – (3) ta đc

    2B = 1 – 1/3^99

    => B = 1 – 1/3^99 /2 = 1/2 – 1/3^99.2

    => 2A = 1 + 1/2 – 3^99/2 + 100/3^99  < 1 + 1/2 = 3/2

    => A < 3/2 : 2 = 3/4

    Giải thích các bước giải:

     

    Bình luận
  2. Đặt `A=1/3+2/3^2+3/3^3+…+100/3^100`

    `3A=1+2/3+3/3^2+…+100/3^99`

    `2A=1+2/3+3/3^2+…+100/3^99-(1/3+2/3^2+3/3^3+…+100/3^100)`

    `2A=1+2/3-1/3+3/3^2-2/3^2+…+100/3^99-99/3^99-100/3^100`

    `2A=1+1/3+1/3^2+1/3^3+…+1/3^99-100/3^100`

    `2A=1-100/3^100+(1/3+1/3^2+1/3^3+…+1/3^99)`

    Đặt `B=1/3+1/3^2+1/3^3+…+1/3^99`

    `3B=1+1/3+1/3^2+..+1/3^98`

    `2B=1+1/3+1/3^2+…1/3^98-(1/3+1/3^2+1/3^3+…+1/3^99)`

    `2B=1-1/3^99`

    `B=1/2-1/(3^99 .2)`

    `⇒2A=1-100/3^100+1/2-1/(3^99 .2)`

    `2A=1+1/2-100/3^100-1/(3^99 .2)`

    `⇒2A<1+1/2`

    `⇒A<3/4`

     

    Bình luận

Viết một bình luận