CMR A=3^2/10^2+3^2/11^2+….+3^2/99^2>4/5

CMR A=3^2/10^2+3^2/11^2+….+3^2/99^2>4/5

0 bình luận về “CMR A=3^2/10^2+3^2/11^2+….+3^2/99^2>4/5”

  1. Ta có: `3^2/10^2 = 3^2/10.10 > 3^2/10.11`

    `3^2/11^2 = 3^2/11.11 > 3^2/11.12`

    `………………………………………..`

    `3^2/99^2 = 3^2/99.99 > 3^2/99.100`

    `=> 3^2/10^2 + 3^2/11^2 +….+3^2/99^2 > 3^2/10.11 + 3^2/11.12 + ….+3^2/99.100`

    `=> A > 3^2( 1/10.11 + 1/11.12 +…+1/99.100)`

    `=> A > 3^2( 1/10- 1/11 + 1/11 – 1/12 +…+1/99-1/100)`

    `=> A > 3^2( 1/10 – 1/100)`

    `=> A > 9. 9/100`

    `=> A > 81 /100`

    Vì `81/100 > 4/5`

    `=> A> 4/5`

    Vậy `A> 4/5`

    Bình luận
  2. Bài làm :

    Ta có :

    \(\left\{ \begin{array}{l}\dfrac{3^2}{10^2} > \dfrac{3^2}{10 . 11}\\ \dfrac{3^2}{11^2} > \dfrac{3^2}{11 . 12} \\………..\\ \dfrac{3^2}{99^2} > \dfrac{3^2}{99 . 100}\end{array} \right.\)

    `-> A > 3^2/(10 . 11) + 3^2/(11 . 12) + … + 3^2/(99 . 100)`

    `-> A > 3^2[1/(10 . 11) + 1/(11 . 12) + …. + 1/(99 . 100)]`

    `-> A > 3^2 [1/10 – 1/11 + 1/11 – 1/12 + … + 1/99 – 1/100]`

    `-> A > 3^2 [1/10 + (- 1/11 + 1/11 – 1/12 + … + 1/99) – 1/100]`

    `-> A > 3^2 [1/10 – 1/100]`

    `->A > 3^2 . 9/100`

    `-> A > 9 . 9/100`

    `-> A > 81/100`

    Ta thấy `81/100 > 4/5`

    `-> A > 4/5`

    Bình luận

Viết một bình luận