CMR A=3^2/10^2+3^2/11^2+….+3^2/99^2>4/5 01/09/2021 Bởi Caroline CMR A=3^2/10^2+3^2/11^2+….+3^2/99^2>4/5
Ta có: `3^2/10^2 = 3^2/10.10 > 3^2/10.11` `3^2/11^2 = 3^2/11.11 > 3^2/11.12` `………………………………………..` `3^2/99^2 = 3^2/99.99 > 3^2/99.100` `=> 3^2/10^2 + 3^2/11^2 +….+3^2/99^2 > 3^2/10.11 + 3^2/11.12 + ….+3^2/99.100` `=> A > 3^2( 1/10.11 + 1/11.12 +…+1/99.100)` `=> A > 3^2( 1/10- 1/11 + 1/11 – 1/12 +…+1/99-1/100)` `=> A > 3^2( 1/10 – 1/100)` `=> A > 9. 9/100` `=> A > 81 /100` Vì `81/100 > 4/5` `=> A> 4/5` Vậy `A> 4/5` Bình luận
Bài làm : Ta có : \(\left\{ \begin{array}{l}\dfrac{3^2}{10^2} > \dfrac{3^2}{10 . 11}\\ \dfrac{3^2}{11^2} > \dfrac{3^2}{11 . 12} \\………..\\ \dfrac{3^2}{99^2} > \dfrac{3^2}{99 . 100}\end{array} \right.\) `-> A > 3^2/(10 . 11) + 3^2/(11 . 12) + … + 3^2/(99 . 100)` `-> A > 3^2[1/(10 . 11) + 1/(11 . 12) + …. + 1/(99 . 100)]` `-> A > 3^2 [1/10 – 1/11 + 1/11 – 1/12 + … + 1/99 – 1/100]` `-> A > 3^2 [1/10 + (- 1/11 + 1/11 – 1/12 + … + 1/99) – 1/100]` `-> A > 3^2 [1/10 – 1/100]` `->A > 3^2 . 9/100` `-> A > 9 . 9/100` `-> A > 81/100` Ta thấy `81/100 > 4/5` `-> A > 4/5` Bình luận
Ta có: `3^2/10^2 = 3^2/10.10 > 3^2/10.11`
`3^2/11^2 = 3^2/11.11 > 3^2/11.12`
`………………………………………..`
`3^2/99^2 = 3^2/99.99 > 3^2/99.100`
`=> 3^2/10^2 + 3^2/11^2 +….+3^2/99^2 > 3^2/10.11 + 3^2/11.12 + ….+3^2/99.100`
`=> A > 3^2( 1/10.11 + 1/11.12 +…+1/99.100)`
`=> A > 3^2( 1/10- 1/11 + 1/11 – 1/12 +…+1/99-1/100)`
`=> A > 3^2( 1/10 – 1/100)`
`=> A > 9. 9/100`
`=> A > 81 /100`
Vì `81/100 > 4/5`
`=> A> 4/5`
Vậy `A> 4/5`
Bài làm :
Ta có :
\(\left\{ \begin{array}{l}\dfrac{3^2}{10^2} > \dfrac{3^2}{10 . 11}\\ \dfrac{3^2}{11^2} > \dfrac{3^2}{11 . 12} \\………..\\ \dfrac{3^2}{99^2} > \dfrac{3^2}{99 . 100}\end{array} \right.\)
`-> A > 3^2/(10 . 11) + 3^2/(11 . 12) + … + 3^2/(99 . 100)`
`-> A > 3^2[1/(10 . 11) + 1/(11 . 12) + …. + 1/(99 . 100)]`
`-> A > 3^2 [1/10 – 1/11 + 1/11 – 1/12 + … + 1/99 – 1/100]`
`-> A > 3^2 [1/10 + (- 1/11 + 1/11 – 1/12 + … + 1/99) – 1/100]`
`-> A > 3^2 [1/10 – 1/100]`
`->A > 3^2 . 9/100`
`-> A > 9 . 9/100`
`-> A > 81/100`
Ta thấy `81/100 > 4/5`
`-> A > 4/5`