CMR $\frac{1}{\sqrt{k}(k+1)}<$ $2(\frac{1}{\sqrt{k}}-$ $\frac{1}{\sqrt{k+1}}$

CMR $\frac{1}{\sqrt{k}(k+1)}<$ $2(\frac{1}{\sqrt{k}}-$ $\frac{1}{\sqrt{k+1}}$

0 bình luận về “CMR $\frac{1}{\sqrt{k}(k+1)}<$ $2(\frac{1}{\sqrt{k}}-$ $\frac{1}{\sqrt{k+1}}$”

  1. Bạn tham khảo:

    $\frac{\sqrt{k}}{k(k+1)}=$ $\sqrt{k}$.($\frac{1}{k}-$ $\frac{1}{k+1})$

    =$\sqrt{k} $.($\frac{1}{\sqrt{k}}-$ $\frac{1}{\sqrt{k+1}}).($ $\frac{1}{\sqrt{k}}+$ $\frac{1}{\sqrt{k+1}})$

    =($1+\frac{\sqrt{k}}{\sqrt{k+1}})($ $\frac{1}{\sqrt{k}}-$ $\frac{1}{\sqrt{k+1})}<2$($\frac{1}{\sqrt{k}}-$ $\frac{1}{\sqrt{k+1}})$ 

    Bình luận

Viết một bình luận