CMR $\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+…+\sqrt{2}}}}} (2020 dấu căn)<2$

CMR $\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+…+\sqrt{2}}}}} (2020 dấu căn)<2$

0 bình luận về “CMR $\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+…+\sqrt{2}}}}} (2020 dấu căn)<2$”

  1. Ta có:

    $2 = \sqrt4$

    $= \sqrt{2 + 2}$

    $= \sqrt{2 + \sqrt4}$

    $=\sqrt{2 + \sqrt{2 + 2}}$

    $= \sqrt{2 + \sqrt{2 + \sqrt4}}$

    $= \sqrt{2 + \sqrt{2 + \sqrt{2 + 2}}}$

    $=\sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt4}}}$

    $ =\underbrace{\sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{2+\dots+\sqrt4}}}}}_{\text{2020 dấu căn}}$

    Do $\sqrt2 < \sqrt4$

    nên $\underbrace{\sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{2+\dots+\sqrt2}}}}}_{\text{2020 dấu căn}} < \underbrace{\sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{2+\dots+\sqrt4}}}}}_{\text{2020 dấu căn}}$

    hay $\underbrace{\sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{2+\dots+\sqrt2}}}}}_{\text{2020 dấu căn}} < 2$

    Bình luận

Viết một bình luận