Có x1+x2=2m+3 x1x2=-2m-4 Tìm m sao cho Ix1I+Ix2I=5 22/07/2021 Bởi Eva Có x1+x2=2m+3 x1x2=-2m-4 Tìm m sao cho Ix1I+Ix2I=5
Đáp án: $m = 0;m = – 4$ Giải thích các bước giải: $\begin{array}{l}\left| {{x_1}} \right| + \left| {{x_2}} \right| = 5\\ \Leftrightarrow {\left( {\left| {{x_1}} \right| + \left| {{x_2}} \right|} \right)^2} = 25\\ \Leftrightarrow x_1^2 + x_2^2 + 2\left| {{x_1}{x_2}} \right| = 25\\ \Leftrightarrow {\left( {{x_1} + {x_2}} \right)^2} – 2{x_1}{x_2} + 2\left| {{x_1}{x_2}} \right| = 25\\ \Leftrightarrow {\left( {2m + 3} \right)^2} – 2\left( { – 2m – 4} \right) + 2\left| { – 2m – 4} \right| = 25\\ \Leftrightarrow 4{m^2} + 12m + 9 + 4m + 8 + 4\left| {m + 2} \right| = 25\\ \Leftrightarrow 4{m^2} + 16m – 8 + 4\left| {m + 2} \right| = 0\\ \Leftrightarrow {m^2} + 4m – 2 + \left| {m + 2} \right| = 0\\ \Leftrightarrow \left| {m + 2} \right| = – {m^2} – 4m + 2\left( 1 \right)\\Dk: – {m^2} – 4m + 2 \ge 0\\ \Leftrightarrow {m^2} + 4m + 4 \le 6\\ \Leftrightarrow {\left( {m + 2} \right)^2} \le 6\\ \Leftrightarrow – \sqrt 6 – 2 \le m \le \sqrt 6 – 2\\\left( 1 \right) \Leftrightarrow \left[ \begin{array}{l} – {m^2} – 4m + 2 = m + 2\\ – {m^2} – 4m + 2 = – m – 2\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}{m^2} + 5m = 0\\{m^2} + 3m – 4 = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}m = 0\\m = – 5\\m = 1\\m = – 4\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}m = 0\\m = – 4\end{array} \right.\\Vậy\,m = 0/m = – 4\end{array}$ Bình luận
Đáp án: $m = 0;m = – 4$
Giải thích các bước giải:
$\begin{array}{l}
\left| {{x_1}} \right| + \left| {{x_2}} \right| = 5\\
\Leftrightarrow {\left( {\left| {{x_1}} \right| + \left| {{x_2}} \right|} \right)^2} = 25\\
\Leftrightarrow x_1^2 + x_2^2 + 2\left| {{x_1}{x_2}} \right| = 25\\
\Leftrightarrow {\left( {{x_1} + {x_2}} \right)^2} – 2{x_1}{x_2} + 2\left| {{x_1}{x_2}} \right| = 25\\
\Leftrightarrow {\left( {2m + 3} \right)^2} – 2\left( { – 2m – 4} \right) + 2\left| { – 2m – 4} \right| = 25\\
\Leftrightarrow 4{m^2} + 12m + 9 + 4m + 8 + 4\left| {m + 2} \right| = 25\\
\Leftrightarrow 4{m^2} + 16m – 8 + 4\left| {m + 2} \right| = 0\\
\Leftrightarrow {m^2} + 4m – 2 + \left| {m + 2} \right| = 0\\
\Leftrightarrow \left| {m + 2} \right| = – {m^2} – 4m + 2\left( 1 \right)\\
Dk: – {m^2} – 4m + 2 \ge 0\\
\Leftrightarrow {m^2} + 4m + 4 \le 6\\
\Leftrightarrow {\left( {m + 2} \right)^2} \le 6\\
\Leftrightarrow – \sqrt 6 – 2 \le m \le \sqrt 6 – 2\\
\left( 1 \right) \Leftrightarrow \left[ \begin{array}{l}
– {m^2} – 4m + 2 = m + 2\\
– {m^2} – 4m + 2 = – m – 2
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
{m^2} + 5m = 0\\
{m^2} + 3m – 4 = 0
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
m = 0\\
m = – 5\\
m = 1\\
m = – 4
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
m = 0\\
m = – 4
\end{array} \right.\\
Vậy\,m = 0/m = – 4
\end{array}$