$\color{blue}{Tính B = 1.2.3 + 2.3.4 + … + (n – 1)n(n + 1)}$ $\color{red}{ai lm hộ mik ik}$ 03/11/2021 Bởi Parker $\color{blue}{Tính B = 1.2.3 + 2.3.4 + … + (n – 1)n(n + 1)}$ $\color{red}{ai lm hộ mik ik}$
B=1.2.3+2.3.4+.........+(n−1)n(n+1) Ta có4B=1.2.3.4+2.3.4.4+……..+(n−1)n(n+1).4 =>4B=(4−0).1.2.3+(5−1).2.3.4+.........+[(n+2)−(n−2)](n−1)n(n+1) =>4B=1.2.3.4−0.1.2.3+2.3.4.5−1.2.3.4+…….+(n−1)n(n+1)(n+2)(n+3)−(n−2)(n−1)n(n+1) =>4B=(n−1)n(n+1)(n+2) =>B= (n−1)n(n+1)(n+2)/4` Bình luận
Giải thích các bước giải: `B=1.2.3+2.3.4+.........+(n−1)n(n+1)` `⇔4B=1.2.3.4+2.3.4.4+........+(n−1)n(n+1).4` `⇔4B=(4−0).1.2.3+(5−1).2.3.4+.........+[(n+2)−(n−2)](n−1)n(n+1)` `⇔4B=1.2.3.4−0.1.2.3+2.3.4.5−1.2.3.4+.......+(n−1)n(n+1)(n+2)(n+3)−(n−2)(n−1)n(n+1)` `⇔4B=(n−1)n(n+1)(n+2)` `⇔B=` `(n−1)n(n+1)(n+2)/4` Bình luận
B=1.2.3+2.3.4+.........+(n−1)n(n+1)
Ta có4B=1.2.3.4+2.3.4.4+……..+(n−1)n(n+1).4
=>4B=(4−0).1.2.3+(5−1).2.3.4+.........+[(n+2)−(n−2)](n−1)n(n+1)
=>4B=1.2.3.4−0.1.2.3+2.3.4.5−1.2.3.4+…….+(n−1)n(n+1)(n+2)(n+3)−(n−2)(n−1)n(n+1)
=>4B=(n−1)n(n+1)(n+2)
=>B= (n−1)n(n+1)(n+2)/4`
Giải thích các bước giải:
`B=1.2.3+2.3.4+.........+(n−1)n(n+1)`
`⇔4B=1.2.3.4+2.3.4.4+........+(n−1)n(n+1).4`
`⇔4B=(4−0).1.2.3+(5−1).2.3.4+.........+[(n+2)−(n−2)](n−1)n(n+1)`
`⇔4B=1.2.3.4−0.1.2.3+2.3.4.5−1.2.3.4+.......+(n−1)n(n+1)(n+2)(n+3)−(n−2)(n−1)n(n+1)`
`⇔4B=(n−1)n(n+1)(n+2)`
`⇔B=` `(n−1)n(n+1)(n+2)/4`