d = 1 +1/2 * (1+2) +1/3 * (1+2+3) + … + 1/2020 * (1+2+3+ … +2020) 09/10/2021 Bởi Kennedy d = 1 +1/2 * (1+2) +1/3 * (1+2+3) + … + 1/2020 * (1+2+3+ … +2020)
Ta có: ` D= 1+1/2 . (1+2)+1/3 . (1+2+3)+…+1/2020 . (1+2+3+…+2020) ` ` <=> D= 1+ 1/2 . 3 +…+1/2020 . 2041210 ` ` <=> D =1+1,5+2+…+ 1010,5 ` ` <=> D = \frac{ (1010,5 + 1).[(1010,5 – 1) : 0,5 + 1] }{2} ` ` <=> D = \frac{2043230}{2} ` ` <=> D = 1021615 ` Bình luận
Ta có:
` D= 1+1/2 . (1+2)+1/3 . (1+2+3)+…+1/2020 . (1+2+3+…+2020) `
` <=> D= 1+ 1/2 . 3 +…+1/2020 . 2041210 `
` <=> D =1+1,5+2+…+ 1010,5 `
` <=> D = \frac{ (1010,5 + 1).[(1010,5 – 1) : 0,5 + 1] }{2} `
` <=> D = \frac{2043230}{2} `
` <=> D = 1021615 `