D=5^2=5^3+5^4+5^5+…+5^99 chứng minh rằng C:6 03/08/2021 Bởi Daisy D=5^2=5^3+5^4+5^5+…+5^99 chứng minh rằng C:6
$@Mon$ $D=$ $5^{2}$ + $5^{3}$ + $5^{4}$ + $x^{5}$ $+…+$ $5^{99}$ $=$ ($5^{2}$ + $5^{3}$) + ($5^{4}$ + $x^{5}$) $+…+$ + ($5^{98}$ + $5^{99}$) $=$ $5²(5+1)$ + $5^{4}$ $(5+1)$ $+…+$ $5^{98}$ $(5+1)$$=$ $5².6$ + $5^{4}$ .$6$ $+…+$ $5^{98}$. $6$ $=$ $6.$ ($5^{2}$ + $5^{4}$ $+…+$ $5^{98}$) $chia$ $hết$ $cho$ $6$$Chúc$ $bạn$ $học$ $tốt!$ Bình luận
Bạn tham khảo : $D = 5^2 + 5^3 + 5^4 + 5^5 + …+5^{99}$ $5D = 5^3 + 5^4 + 5^5 + 5^6 + … + 5^{100}$ $5D – D = ( 5^3 + 5^4 + 5^5 + 5^6 + … + 5^{100}) -(5^2 + 5^3 + 5^4 + 5^5 + …+5^{99})$ $4D = 5^{100} – 5^2$ $D = \dfrac{5^{100} – 5^2}{4}$ Bình luận
$@Mon$
$D=$ $5^{2}$ + $5^{3}$ + $5^{4}$ + $x^{5}$ $+…+$ $5^{99}$
$=$ ($5^{2}$ + $5^{3}$) + ($5^{4}$ + $x^{5}$) $+…+$ + ($5^{98}$ + $5^{99}$)
$=$ $5²(5+1)$ + $5^{4}$ $(5+1)$ $+…+$ $5^{98}$ $(5+1)$
$=$ $5².6$ + $5^{4}$ .$6$ $+…+$ $5^{98}$. $6$
$=$ $6.$ ($5^{2}$ + $5^{4}$ $+…+$ $5^{98}$) $chia$ $hết$ $cho$ $6$
$Chúc$ $bạn$ $học$ $tốt!$
Bạn tham khảo :
$D = 5^2 + 5^3 + 5^4 + 5^5 + …+5^{99}$
$5D = 5^3 + 5^4 + 5^5 + 5^6 + … + 5^{100}$
$5D – D = ( 5^3 + 5^4 + 5^5 + 5^6 + … + 5^{100}) -(5^2 + 5^3 + 5^4 + 5^5 + …+5^{99})$
$4D = 5^{100} – 5^2$
$D = \dfrac{5^{100} – 5^2}{4}$